

Efficient Perception of Proteins and Nucleic Acids from Atomic Connectivity

Roger Sayle, Ph.D.

NextMove Software,

Cambridge, UK

MOTIVATION

- Chemical Structure Normalization/Tautomers.
- IMI Open PHACTS suggest using FDA rules.
- FDA 2007 guidelines on structure registration contains a section on peptides.
- Bridging the gap between cheminformatics (small molecules) and bioinformatics (DNA and protein sequences), peptides pose some interesting technical challenges.

DEPICTION OF PEPTIDES

 $\begin{array}{l} Goserelin \\ C_{59}H_{84}N_{18}O_{14} \end{array}$

END RESULT

FILE FORMAT CONVERSION

 Information loss from MDL/SMILES to PDB/MMD Bond orders, Formal charges, Isotopes

Information loss from PDB/MMD to MDL/SMILES
 Residue information, Occupancy, B-factors

THE CHALLENGE

- Many structural biology and computational chemistry applications assume standard atom and residue naming, some even ordering.
- In OpenEye's OEChem toolkit, recognizing PDB residues is done in OEPercieveResidues, and in OpenBabel it's done in OBChainsParsers.
- This talk describes aspects of the advanced pattern matching algorithms that are used.

THE INPUT

- The input is a minimal connection table.
- Only the graph connectivity is used, allowing molecules without bond orders to be handled.
- Only heavy atoms are required, explicit and implicit hydrogen counts aren't used.
- Likewise, any formal charges, hybridization and 3D geometry are also ignored.
- Typical sources include SMILES and XYZ files.

THE OUTPUT (PDB FILE FORMAT)

ATOM	261	N	GLY	37	20.172	17.730	6.217	1.00	8.48
ATOM	262	CA	GLY	37	21.452	16.969	6.513	1.00	9.20
ATOM	263	С	GLY	37	21.143	15.478	6.427	1.00	10.41
ATOM	264	0	GLY	37	20.138	15.023	5.878	1.00	12.06
ATOM	265	N	ALA	38	22.055	14.701	7.032	1.00	9.24
ATOM	266	CA	ALA	38	22.019	13.242	7.020	1.00	9.24
ATOM	267	С	ALA	38	21.944	12.628	8.396	1.00	9.60
ATOM	268	0	ALA	38	21.869	11.387	8.435	1.00	13.65
ATOM	269	CB	ALA	38	23.246	12.697	6.275	1.00	10.43
ATOM	270	N	THR	39	21.894	13.435	9.436	1.00	8.70
ATOM	271	CA	THR	39	21.936	12.911	10.809	1.00	9.46
ATOM	272	С	THR	39	20.615	13.191	11.521	1.00	8.32
ATOM	273	0	THR	39	20.357	14.317	11.948	1.00	9.89
ATOM	274	CB	THR	39	23.131	13.601	11.593	1.00	10.72
ATOM	275	OG1	THR	39	24.284	13.401	10.709	1.00	11.66
ATOM	276	CG2	THR	39	23.340	12.935	12.962	1.00	11.81
ATOM	277	N	CYS	40	19.827	12.110	11.642	1.00	7.64
ATOM	278	CA	CYS	40	18.504	12.312	12.298	1.00	8.05
ATOM	279	С	CYS	40	18.684	12.451	13.784	1.00	7.63
ATOM	280	0	CYS	40	19.533	11.718	14.362	1.00	9.64
ATOM	281	CB	CYS	40	17.582	11.117	11.996	1.00	7.80
ATOM	282	SG	CYS	40	17.199	10.929	10.237	1.00	7.30
									_

CHAINS ALGORITHM OVERVIEW

- Identify biopolymer backbones.
- Recognize biopolymer monomer sidechains.

CHAINS ALGORITHM OVERVIEW

- Determine connected components.
- Identify "Hetero" atoms (water, solvent, metals, ions, cofactors and common ligands; ATP, NAD, HEM).
- Identify biopolymer backbones (peptide, DNA, RNA).
- Traverse and number biopolymer backbone residues.
- Recognize biopolymer monomer sidechains (potentially substituted functional groups).
- Annotate hydrogen atoms (if present).
- Sort atoms into PDB order.
- Assign consecutive serial numbers (unique names).

POLYMER MATCHING

 Matching of linear, cyclic and dendrimeric polymers and copolymers can be efficiently implemented by graph relaxation algorithms.

 Each atom records a set of possible template equivalences represented as a bit vector.

 These bit vectors are iteratively refined using the bit vectors of neighboring atoms.

PEPTIDES AND PROTEINS

Example of a copolymer (substituted backbone).

- Complications from glycine and proline.
- N-terminal acetyl and formyl.
- C-terminal aldehyde and amide.

PROTEIN BACKBONE DEFINITION

 Assign initial constraints based upon atomic number and heavy atom degree.

BitN	Nitrogen	2 neighbors
	INICIOSCII	2 11015110013

BitCA Carbon 3 neighbors

BitC Carbon 3 neighbors

BitO Oxygen 1 neighbor

PROTEIN BACKBONE DEFINITION

 Perform iterative relaxation at each atom using its neighbor's bit masks.

BitN: BitCA BitC

BitCA: BitN BitC AnyC

BitC: BitCA BitN BitO

BitO: BitC

CURRENT PROTEIN DEFINITIONS

- Five types of nitrogen (±proline, ±terminal & amide)
- Two types of alpha carbon (regular vs. GLY)
- Four types of carbonyl carbon
- Two types of oxygen (O and OXT)

• Currently 13 atom types (bits).

NUCLEIC ACIDS

- Complications include termination & methylation.
- Currently 19 atom types (bits).

FUNCTIONAL GROUP MATCHING

- Given an known attachment atom/bond determine whether the affixed molecular fragment is a member of a dictionary of known functional groups or sidechains.
- The standard "default" strategy is to treat the dictionary as a list of SMARTS patterns and loop over each one until a hit is identified.
- This is O(n) in the size of the dictionary.

RECOGNIZING MONOMER SIDECHAINS

Avoid backtracking by preprocessing monomer sets.

Enumerate all possible depth first graph traversals

C1,C3,C2,C1,C1 => ILE: CA,CB,CG1,CD1,CG2

C1,C3,C1,C2,C1 => ILE: CA,CB,CG2,CG1,CD1

RECOGNIZING MONOMER SIDECHAINS

- The sequence of atomic numbers and the heavy degree (or fanout) of each vertex uniquely identifies the sidechain.
- Conceptually, the candidate sidechain is traversed once and identified by looking up the "traversal" in a "dictionary".
- Encode the traversal dictionary as a prefix-closed "tries" to efficiently match arbitrary dictionaries.

EXAMPLE PEPTIDE FLOW CHART

GRAPH MATCHING DURING TRAVERSAL

- Instead of initially traversing the entire sidechain to be recognized and then looking it up in the dictionary, we can perform the look-up as we traverse our molecule.
- This has the benefit that we can fail fast and runtime is bounded by the number of atoms in our largest monomer.
- In fact, the algorithm's performance is independent of the number of monomer definitions.

OECHEM IMPLEMENTATION

- In OEChem, a way-ahead-of-time "compiler" processes an input set of sidechain definitions and outputs them as a bytecode program.
- These bytecodes are efficiently interpreted at runtime inside OEPerceiveResidues.
- Separate sidechain "programs" are used for proteins and nucleic acids.
- An early implementation in OELib and OpenBabel builds these bytecodes just-in-time.

RESULTING BYTECODE

```
static const OEByteCode peptide bc[301] = {
                                 0,
                                            0 }, //
 { OEOpCode::EVAL,
                                       1,
                                 0,
                                      61, 60 }, //
 { OEOpCode::COUNT,
                                                       1
 { OEOpCode::ELEM,
                                 6,
                                       3, -1 }, //
                                 0, 4, 0 }, //
 { OEOpCode::EVAL,
                                                       3
                                       5, 6 }, //
 { OEOpCode::COUNT,
                                 0,
 { OEOpCode::ASSIGN, BCNAM('A','L','A'),
                                       2, 0 }, //
                                                       5
 { OEOpCode::COUNT,
                                       7, 77 }, //
                                                       6
                                 1,
                                       8, 41 }, //
 { OEOpCode::ELEM,
                                 6,
                                                       7
                                       9, 0 }, //
 { OEOpCode::EVAL,
                                 0,
                                                       8
                                 0,
 { OEOpCode::COUNT,
                                     174, 173 }, //
                                 7,
                                      11,
                                            17 }, //
 { OEOpCode::ELEM,
                                                      10
 { OEOpCode::EVAL,
                                 0,
                                      12, 0 }, //
                                                      11
 { OEOpCode::COUNT,
                                      13, 229 }, //
                                                      12
                                 0,
 { OEOpCode::ELEM,
                                 8,
                                      14, -1 }, //
                                                      13
 { OEOpCode::EVAL,
                                 0,
                                      15, 0 }, //
                                                      14
 { OEOpCode::COUNT,
                                      16, -1 }, //
                                                      15
                                 0,
 { OEOpCode::ASSIGN, BCNAM('A','S','N'),
                                       5, 0 }, //
                                                      16
```

SUPPORTED PEPTIDE SIDECHAINS

- The twenty standard amino acids (D and L- forms).
 - ALA, ASN, ASP, ARG, CYS, GLN, GLU, GLY, HIS, ILE, LEU, LYS,
 MET, PHE, PRO, SER, THR, TRP, TYR and VAL.
- Fourteen non-standard amino acids.
 - ABA, CGU, CME, CSD, HYP, LYZ, MEN, MLY, MSE, NLE, NVA,
 ORN, PCA, PTR, SEP and TPO.
- Two N-terminal modifications.
 - Acetyl (ACE) and Formyl (FOR).
- One C-terminal modification residue.
 - Amide (NH2).

SUPPORTED NUCLEIC SIDECHAINS

- Four standard DNA bases.
 - DA, DC, DG, DT.
- Four standard RNA bases.
 - A, C, G, U.
- Seven non-standard RNA bases.
 - 1MA, 2MG, 5MC, 7MG, M2G, PSU, YG.

OEPERCEIVERESIDUES PERFORMANCE

As measured on a 2.2GHz AMD Opteron.

Code	Atoms	Mons	Timings	Average
1CRN	327	46	15s/10K	1.5 ms
4TNA	1,656	76	98s/10K	9.8 ms
1GD1	10,984	1336	185s/1K	185 ms

 Previous work by Siani, Weininger and Blaney (JCICS 1994) report taking 8.2s on an R3000 SGI to identify insulin (51aa) using SMARTS matching.

BYTECODE SIZE ISSUES

- Using all possible traversal permutations works well for the standard amino and nucleic acid sidechains.
- To match the 34 supported amino acid sidechains required a "program" of only 521 bytecodes, and the 11 supported nucleic acid bases required 3,488 byte codes.
- Then came wybutosine (PDB residue YG) which had pathological branching requiring 91,974 byte codes due to combinatorics.

WYBUTOSINE

BYTECODE SIZE ISSUES

- The solution was to perform a local sorting step when pushing neighboring atoms on to the stack.
- Sort uses atomic number and heavy degree.
- No performance impact in OEChem as we were already sorting for permutation stability.

<u>Dictionary</u>	<u>Before</u>	<u>After</u>
Peptide	521	301
Nucleic	3,488	326
Nucleic+YG	95,391	649

IDENTIFYING PEPTIDES

- To a first approximation, use OpenBabel to convert the SMILES to a PDB file, and if it only contains ATOMs (no HETATMs) it's a peptide.
- A better definition is to use an explicit list of acceptable amino (and nucleic) acid residues and check for the presence of these.
- Crosslinking is easily retrieved as bonds between residues, excepting standard eupeptide links.

CRAMBIN (FDA & IUPAC STYLES)

HUMAN INSULIN (MULTIPLE CHAINS)

$$H_2N - F V N Q H L C G S H L V E A L$$
 $Y L V C G E R G F F Y T P K T - COOH$
 $H_2N - G I V E Q C C T S I C S L Y Q$
 $L E N Y C N - COOH$

OXYTOCIN (DISULFIDE & AMIDE)

$$H_2N$$
 - C Y I Q N C P L G-CONH₂

GRAMICIDINS (CYCLIC PEPTIDES)

—D-Phe **P V** Orn **L** D-Phe **P V** Orn **L** —

D-Phe — Pro — Val — Orn — Leu — D-Phe — Pro — Val — Orn — Leu —

D-Phe → Pro → Val → Orn → Leu → D-Phe → Pro → Val → Orn → Leu —

LULIBERIN (TERMINAL OPTIONS)

NESIRITIDE (STEREO OPTIONS)

DATABASE STATISTICS

- Unfortunately, of 250251 compounds in the NCI Aug 2000 database, only 758 (0.3%) are peptide or peptide-like and only 86 (0.03%) are oligonucleotide sequences.
- Of the 32,274,581 compounds in PubChem[February 2012], only 251,866 (0.78%) and only 1075 (0.00%) are oligonucleotide sequences.
- Alas the SMARTS pattern "NCC(=O)NCC(=O)NCC=O" for a tripeptide only matches 391,502 (1.2%), an upper bound on the prevalence of peptides.

FUTURE WORK

- Analysis of non-standard AA usage in drugs.
- Additional non-standard sidechains (SAR).
- Alloisoleucine (IIL) and allothreonine (ALO).
- Glycoinformatics (post-translational sugar chains).
- Matching improvements (compilation/profiling).

CONCLUSIONS

- Peptides and biologics don't need their own file formats if their sequence can be perceived.
- Generating prettier 2D depictions is simple.
- Peptide informatics (and glycoinfomatics)
 potentially offer great opportunities for research
 and innovation.
- It's always great to find a new use for an old algorithm.

ACKNOWLEDGEMENTS

- OpenEye Scientific Software.
- AstraZeneca R&D.
- Vertex Pharmaceuticals.
- European Bioinformatics Institute.
- RasMol's user community.

Thank you for your time.

