Chemical Text Mining for Current Awareness of Pharmaceutical Patents

Daniel Lowe and Roger Sayle
NextMove Software
Cambridge, UK
US PATENT APPLICATIONS BY YEAR

2012 includes patent applications published on or before 9th August 2012. “Pharma” is defined as IPC codes C07, A61K, A61P and A01N.
The following USPTO patent products are available for free download.

Patent Grants

- Patent Grant Multi-Page Images (1790 – present)
- Patent Grant Full Text with Embedded Images (2001 – present)
- Patent Grant Full Text (1976 – present)
- Patent Grant Bibliographic Data (1976 – present)
- Patent Grant OCR Text (1920 – 1979)
- Patent Grant Single-Page Images (Oct 2010 – present)

Patent Application Publications

- PAIR (Patent Application Information Retrieval) Data

Additional Patent Data

- Patent Maintenance Fee Events (1981 – present)
- Patent Classification Information (current)
- Patent IFW Petition Decisions
EXAMPLE 30

[6-(2-Chloro-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine Hydrochloride

The title product was prepared from 4-chloro-6-(2-chloro-ethoxy)-7-(2-methoxyethoxy)-quinazoline (399 mg, 1.26 mmol) and 3-ethynyl-aniline (147 mg, 1.26 mmol) as described for Example 29. (515 mg; 94%; M.P. 215°-225° C. (dec); LC-MS: 398 (MH⁺); anal. RP18-HPLC RT: 4.85 min.).
SGML (2001 GRANTS)

- Uses different tags to Red Book documents
- May contain unclosed tags:

```xml
<PCIT>
<DOC><DNUM><PDAT>5154857</PDAT></DNUM>
<DATE><PDAT>19921000</PDAT></DATE></DOC>
<PARTY-US>
<NAM><SNM><STEXT><PDAT>Goto et al.</PDAT></STEXT></SNM></NAM>
</PARTY-US>
<PNC><PDAT>25229963</PDAT></PNC></PCIT><CITED-BY-EXAMINER>
```
Example 30

Preparation of (E)-2-amino-N-(3-(2-(2,6,6-trimethylcyclohex-1-enyl)vinyl)phenyl)acetamide

(E)-2-amino-N-(3-(2-(2,6,6-trimethylcyclohex-1-enyl)vinyl)phenyl)acetamide was prepared following the method used in Example 15.

Step 1: Coupling of Wittig reagent 24 with 3-nitrobenzaldehyde gave 1-nitro-3-(2-(2,6,6-trimethylcyclohex-1-enyl)vinyl)benzene as a light yellow oil. Yield (0.639 g, 95%), isomer ratio 4:1 ratio trans:cis.

trans-isomer: H NMR (300 MHz, CDCl₃) δ 8.24 (t, J=1.9 Hz, 1H), 8.04 (m, 1H), 7.69 (d, J=7.7 Hz, 1H), 7.47 (t, J=8.0 Hz, 1H), 6.83 (dd, J=16.3, 0.85 Hz, 1H), 6.40 (d, J=16.3 Hz, 1H), 2.06 (t, J=6.2 Hz, 2H), 1.81 (s, 3H), 1.65 (m, 2H), 1.52 (m, 2H), 1.08 (s, 6H);
Example 30

Preparation of (E)-2-amino-N-(3-(2-(2,6,6-trimethylcyclohex-1-enyl)vinyl)phenyl)acetamide

(E)-2-amino-N-(3-(2-(2,6,6-trimethylcyclohex-1-enyl)vinyl)phenyl)acetamide was prepared following the method used in Example 15.

Step 1: Coupling of Wittig reagent 24 with 3-nitrobenzaldehyde gave 1-nitro-3-(2-(2,6,6-trimethylcyclohex-1-enyl)vinyl)benzene as a light yellow oil. Yield (0.639 g, 95%), isomer ratio 4:1 ratio trans:cis.

trans-isomer: 1H NMR (300 MHz, CDCl$_3$) δ 8.24 (t, J=1.9 Hz, 1H), 8.04 (m, 1H), 7.69 (d, J=7.7 Hz, 1H), 7.47 (t, J=8.0 Hz, 1H), 6.83 (dd, J=16.3, 0.85 Hz, 1H), 6.40 (d, J=16.3 Hz, 1H), 2.06 (t, J=6.2 Hz, 2H), 1.81 (s, 3H), 1.65 (m, 2H), 1.52 (m, 2H), 1.08 (s, 6H);
BENEFITS OF CLEAN INPUT

• Patent feed text:
Cis-2,3,6,7,12,12a-hexahydro-2-benzyl6-(4-methoxyphenyl)-pyrazino[2',1':6,1]pyrido[3,4-b]indole-1,4-dione

• Extracted from USPTO source:
Cis-2,3,6,7,12,12a-hexahydro-2-benzyl6-(4-methoxyphenyl)-pyrazino[2',1':6,1]pyrido[3,4-b]indole-1,4-dione

• LeadMine entity:
Cis-2,3,6,7,12,12a-hexahydro-2-benzyl-6-(4-methoxyphenyl)-pyrazino[2',1':6,1]pyrido[3,4-b]indole-1,4-dione

ACS National Meeting, Philadelphia, USA 19th August 2012
LEADMINE 2.0

• Dictionary and grammar based general entity recogniser

• Tokenization determined by the terms to be recognised
Default Dictionaries

<table>
<thead>
<tr>
<th>Dictionary</th>
<th>Example</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecule</td>
<td>benzoic acid</td>
<td>Infinite</td>
</tr>
<tr>
<td>Dictionary</td>
<td>ranitidine</td>
<td>11,201</td>
</tr>
<tr>
<td>Registry #</td>
<td>GW-409544</td>
<td>Large but finite</td>
</tr>
<tr>
<td>CAS Number</td>
<td>7732-18-5</td>
<td>Large but finite</td>
</tr>
<tr>
<td>Element</td>
<td>gold</td>
<td>185</td>
</tr>
<tr>
<td>Fragment</td>
<td>phenyl</td>
<td>Infinite</td>
</tr>
<tr>
<td>Atom Fragment</td>
<td>chloro</td>
<td>11</td>
</tr>
<tr>
<td>Polymer</td>
<td>polystyrene</td>
<td>74</td>
</tr>
<tr>
<td>Generic</td>
<td>alkane</td>
<td>362</td>
</tr>
<tr>
<td>Noise</td>
<td>formal</td>
<td>16</td>
</tr>
</tbody>
</table>
LEADMINE 2.0

• Dictionaries to be used are configurable e.g. protein targets, genes, diseases, reaction names etc.

• Matching speed is independent of dictionary size

• Any dictionary can be used with spelling correction to match lexically close entities
LEADMINE 2.0 CONFIGURATION

A company registry number for a compound

[dictionary]
 location CFDictR.cfx
 entityType R
 htmlColor #90b0ff
 caseSensitive false
 useSpellingCorrection false

A molecule e.g. 2-methylpyridine

[dictionary]
 location CFDictM.cfx
 entityType M
 htmlColor violet
 enforceBracketing true
 caseSensitive false
 useSpellingCorrection true
 minimumCorrectedEntityLength 9
 maxCorrectionDistance 1

Multiple dictionaries can map to the same entity type

Spelling correction can be adjusted on a per dictionary basis
Building Dictionaries

- Uses Daciuk/Mihov’s algorithm to allow building dictionaries with millions of entities in linear time.
- Extremely large dictionaries are often smaller when compiled than the original input.
- 54 million synonyms from PubChem can be compiled to a dictionary slightly less than 1gb in 17 minutes and 20 seconds!

FOREIGN LANGUAGE SUPPORT

• Chinese and Japanese chemical names may be rapidly converted to English as a pre-processing step

“Translating IUPAC-like chemical nomenclature to and from simplified Chinese” 9:10 am, Wednesday, Global Opportunities in Chemical Information
To a stirred solution of 4-hydroxypiperidine (0.97 g, 9.60 mmol) in anhydrous dimethylformamide (20 mL) at 0°C was added 1-(bromomethyl)-4-methoxybenzene (1.93 g, 9.60 mmol) and triethylamine (2.16 g, 21.4 mmol). The reaction mixture was then warmed to room temperature and stirred overnight. After this time the mixture was concentrated under reduced pressure and the resulting residue was dissolved in ethyl acetate (40 mL), washed with water (20 mL) and brine (20 mL) before being dried over sodium sulfate. The drying agent was filtered off and the filtrate concentrated under reduced pressure. The residue obtained was purified by flash chromatography (silica gel, 0-5% methanol/methylene chloride) to afford 1-(4-methoxybenzyl)piperidin-4-ol as a brown oil (1.70 g, 80%).
SAMPLE OUTPUT (CSV)

"in",E,"M",1,0,"COC1=CC=C(CN2CCC(CC2)O)C=C1","1-(4-methoxybenzyl)piperidin-4-ol",
"in",E,"M",1,0,"BrCC1=CC=C(C=C1)OC","1-(bromomethyl)-4-methoxybenzene",
"in",E,"M",1,0,"OC1CCNCC1","4-hydroxypiperidine",
"in",E,"G",1,0,"brine",
"in",E,"M",1,0,"CN(C=O)C","dimethylformamide",
"in",E,"M",1,0,"C(C)(=O)OCC","ethyl acetate",
"in",E,"M",1,0,"CO","methanol",
"in",E,"M",1,0,"C(Cl)Cl","methylene chloride",
"in",E,"G",1,0,"silica gel",
"in",E,"M",1,0,"S(=O)(=O)([O-][O-].[Na+].[Na+])","sodium sulfate",
"in",E,"M",1,0,"C(C)N(CC)CC","triethylamine",
"in",E,"N",1,0,"O","water",

ACS National Meeting, Philadelphia, USA 19th August 2012
BRAT (BRAT RAPID ANNOTATION TOOL)

<table>
<thead>
<tr>
<th>T1</th>
<th>25-44</th>
<th>4-hydroxypiperidine</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>78-95</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>T3</td>
<td>121-153</td>
<td>1-(bromomethyl)-4-methoxybenzene</td>
</tr>
<tr>
<td>T4</td>
<td>178-191</td>
<td>triethylamine</td>
</tr>
<tr>
<td>T5</td>
<td>404-417</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>T6</td>
<td>439-444</td>
<td>water</td>
</tr>
<tr>
<td>T7</td>
<td>457-462</td>
<td>brine</td>
</tr>
<tr>
<td>T8</td>
<td>495-509</td>
<td>sodium sulfate</td>
</tr>
<tr>
<td>T9</td>
<td>658-668</td>
<td>silica gel</td>
</tr>
<tr>
<td>T10</td>
<td>675-683</td>
<td>methanol</td>
</tr>
<tr>
<td>T11</td>
<td>684-702</td>
<td>methylene chloride</td>
</tr>
<tr>
<td>T12</td>
<td>714-747</td>
<td>1-(4-methoxybenzyl)piperidin-4-ol</td>
</tr>
</tbody>
</table>
BRAT (BRAT RAPID ANNOTATION TOOL)

1. To a stirred solution of 4-hydroxypiperidine (0.97 g, 9.60 mmol) in anhydrous dimethylformamide (20 mL) at 0°C was added 1-(bromomethyl)-4-methoxybenzene (1.93 g, 9.60 mmol) and triethylamine (2.16 g, 21.4 mmol).

2. The reaction mixture was then warmed to room temperature and stirred overnight.

3. After this time the mixture was concentrated under reduced pressure and the resulting residue was dissolved in ethyl acetate (40 mL), washed with water (20 mL) and brine (20 mL) before being dried over sodium sulfate.

4. The drying agent was filtered off and the filtrate concentrated under reduced pressure.

5. The residue obtained was purified by flash chromatography (silica gel, 0-5% methanol/methylene chloride) to afford 1-(4-methoxybenzyl)piperidin-4-ol as a brown oil (1.70 g, 80%).
The following examples were synthesized in a manner analogous to that for 3-[(4-methyl-5-(methylthio)-4H-1,2,4-triazol-3-yl)]pyridine.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Analytical data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-[(4-cyclopropyl-5-(methylthio)-4H-1,2,4-triazol-3-yl)]pyridine</td>
<td>LC-MS (M+1): 233</td>
</tr>
<tr>
<td></td>
<td>4-[(4-Cyclopropyl-5-methylsulfanyl-4H-1,2,4-triazol-3-yl)]-pyridine</td>
<td>1H NMR: 8.77 (d, 2 H), 7.75 (m, 2 H), 3.23 (m, 1 H), 2.82 (s, 3 H), 1.17 (m, 2 H), 0.80 (m, 2 H).</td>
</tr>
<tr>
<td></td>
<td>4-[(4-methyl-5-(methylthio)-4H-1,2,4-triazol-3-yl)]pyridine</td>
<td>1H NMR: (DMSO-D6): 2.7 (s, 3 H) 3.6 (s, 3 H) 7.7 (m, 2 H) 8.8 (d, 2 H)</td>
</tr>
<tr>
<td></td>
<td>3-[(4-fluorophenyl)-4-methyl-5-(methylthio)-4H-1,2,4-triazole</td>
<td>Used directly in the next step towards 3-[(4-fluorophenyl)-4-methyl-5-(methylsulfanyl)-4H-1,2,4-triazole.</td>
</tr>
</tbody>
</table>

Example 839

4-methyl-3-(methylthio)-5-(trifluoromethyl)-4H-1,2,4-triazole
The following examples were synthesized in a manner analogous to that for 3-[4-methyl-5-(methylthio)-4H-1,2,4-triazol-3-yl]pyridine

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Analytical data</th>
<th>Example No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-[4-cyclopropyl-5-(methylthio)-4H-1,2,4-triazol-3-yl]pyridine</td>
<td>LC-MS (M^+ + 1): 233</td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>4-(4-Cyclopropyl-3-methylsulfanyl-4H-1,2,4-triazol-3-yl) pyridine</td>
<td>^1^H NMR: 8.77 (d, 2 H), 7.75 (m, 2 H), 3.23 (m, 1 H), 2.82 (s, 3 H), 1.17 (m, 2 H), 0.80 (m, 2 H).</td>
<td>836</td>
</tr>
<tr>
<td></td>
<td>4-[4-methyl-5-(methylthio)-4H-1,2,4-triazol-3-yl]pyridine</td>
<td>^1^H NMR: (DMSO-d6): 2.7 (s, 3 H) 3.6 (s, 3 H) 7.7 (m, 2 H) 8.8 (d, 2 H)</td>
<td>837</td>
</tr>
<tr>
<td></td>
<td>1-[4-(fluorophenyl)-4-methyl-5-(methylthio)-4H-1,2,4-triazole]</td>
<td>Used directly in the next step towards 3-[4-(fluorophenyl)-4-methyl-5-(methylsulfanyl)-4H-1,2,4-triazole.</td>
<td>838</td>
</tr>
</tbody>
</table>

Example 839

4-methyl-3-(methylthio)-5-(trifluoromethyl)-4H-1,2,4-triazole
PATFETCH-CONT.

• Recognises common USPTO grant/application number variants e.g. 6356863/US 6356863/006356863/US 6,356,863 B1

• Allows all USPTO patent grant/applications to be accessed as text or html from simple URLs e.g. patfetch/patents/6356863.html
"MACROSCOPIC" ANALYSIS

• Having all patents available allows for analysis that spans the entire corpus rather than being limited to a single patent

• Example use cases
 – Identifying the key compounds in a patent
 – Finding the first instance of a molecule in the patent literature
 – Identify patents containing novel chemistry
FILTERING IRRELEVANT PATENTS

• Most irrelevant patents can be excluded by IPC codes. These are assigned by the USPTO to classify each patent.

• Typical pharmaceutical IPC codes
 – CO7 (Organic Chemistry)
 – A61K (Preparations for medical, dental or toilet purposes)
 – A61P (Specific therapeutic activity of chemical compounds or medicinal preparations)
 – AO1N (Preservation of bodies of humans or animals or plants or parts thereof)
Finding the first mention of a compound

- Trivial names of compound often won’t be present in the first patent synthesising a compound
- Brand name Fabior, approved May 11, 2012
- Generic name Tazarotene
- First mentioned in US05023341

Hz, 2.2 Hz), 7.59 (1H, d, J~7.8 Hz), 7.66 (1H, d, J~2.2 Hz), 8.30 (1H, dd, J~7.8 Hz, 2.3 Hz), 9.2.

Alternative synthesis: Ethyl 6-[(4,4-dimethylthiochroman-6-yl)ethynyl]nicotinate (Compound 99)

A solution of 15.4 g (76.2 mmol) of 4,4-dimethyl-6-ethynyl-thiochroman (Compound 1) and 14.0
Finding the first mention of a compound

- Brand name Erivedge, approved January 30, 2012
- Generic name Vismodegib
- First mentioned in US20060063779A1

Example 37

2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide

Procedure G was used to couple 4-chloro-3-(pyridin-2-yl)aniline (50 mg) and 2-chloro-4-methylsulfonylbenzoic acid to proc...
NOVEL COMPOUNDS PER PATENT

Average novel compounds per patent

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>11</td>
<td>10</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>11</td>
</tr>
</tbody>
</table>
NOVEL COMPOUNDS PER PATENT

Average novel compounds per pharmaceutical patent containing novel compounds

ACS National Meeting, Philadelphia, USA 19th August 2012
Awareness of novel scaffolds

ACS National Meeting, Philadelphia, USA 19th August 2012
AWARENESS OF NOVEL SCAFFOLDS

US46041346, 1983
AWARENESS OF NOVEL SCAFFOLDS

US20040038959A1

18
Rate of novel scaffold discovery

RATE OF NOVEL SCAFFOLD DISCOVERY

*year not yet complete

ACS National Meeting, Philadelphia, USA 19th August 2012
SOLVENT OCCURRENCES

Extracted from reactions in 2008-2011 USPTO patent applications
CONCLUSIONS

• Getting clean text from patents is an important starting point

• LeadMine offers a highly configurable environment for performing entity extraction

• Comprehensive coverage of the patent literature can assist in identifying the interesting aspects of a new patent
ACKNOWLEDGEMENTS

• Sorel Muresan and Paul Hongxing Xie, AstraZeneca.
• Nicko Goncheroff, SureChem/Digital Science.
• Colin Batchelor, Royal Society of Chemistry.
• Peter Loew and Heinz Saller, InfoChem.
• Pat Walters, Vertex Pharmaceuticals.

• Thank you for your time.
Simple Java API

ExtractEngine engine = new ExtractEngine();
EntityCollector collector = engine.processString("text to analyse");
List<Entity> foundEntities = collector.getEntities();
for (Entity entity : entities) {
 entity.getText();
 entity.getEntityType();
 entity.getBeg();
 entity.getEnd();
}