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Previous work 

• Efficient Protein and Nucleic Acid Perception from 
Simple Atomic Connectivity 

www.daylight.com/meetings/mug96/sayle/sayle.html 

Describes algorithms for perceiving protein sequence and 
PDB atom names from SMILES, mol or XYZ file of a protein. 
  

• 1st Class SMARTS patterns 

www.daylight.com/meetings/emug97/Sayle/ 

Describes SMARTS syntax and SMARTS algebra, a set of 
semantics preserving transformations that can be used to 
optimize SMARTS patterns. 

http://www.daylight.com/meetings/mug96/sayle/sayle.html
http://www.daylight.com/meetings/emug97/Sayle/


Chemical pattern matching 

• The identification of a specific subgraph within a 
graph, also known as subgraph isomorphism 

• Typically to identify a functional group or 
substructure in a molecule connection table. 

• Query patterns are typically specified as SMARTS, 
MDL query files, CDX or Marvin files. 

• Matching is performed using 

– Ullman’s isomorphism algorithm *1970+ 

– McGregor’s backtracking search *1981+ 



chemical database searching 

• Although a backtracking atom-by-atom match is very 
efficient for matching a single pattern against a single 
molecule, well known optimizations exist for 
scanning a large database of target molecules. 

– Fingerprint screening/inverted indices 

– Character frequency (histogram) screening 

– “Triage” substructure identification 
http://www.daylight.com/meetings/emug00/Sayle/substruct.html 

 

http://www.daylight.com/meetings/emug00/Sayle/substruct.html


Toolkit (SMARTS?) performance 

• Time taken to find O=[C,N]aa[N,O;!H0] hits in 
250,251 SMILES of the NCI August 2000 data. 

 
ToolKit Times (secs) 

OpenEye OEChem v1.7 8.6 

ChemAxon JChem v5.5 58.8 

RDKit v2011_03_2 131.2 

OpenBabel v2.3.0 272.5 

PerlMol 2107.9 

CDK v1.2.10 DNF 



Cheminformatics applications 

• Compound Filtering 

• Fingerprint generation 

– Database clustering  

• Atom Typing 

– Property prediction 



filtering radioactive compounds 

• A molecule is radioactive if any of its atoms are 
radioactive.  An atom is radioactive if its is not 
“stable”. 

• If an isotope is specified it must be one of the 255 
known stable nuclides, otherwise the corresponding 
element must have at least one stable isotope. 

• Elements H to 82Pb, with exceptions of 43Tc and 61Pm. 

• Hence stable is “*0#1,1#1,2#1,0#2,3#2,4#2…+”. 

• Hence, radioactive is “*!0,!#1;!1,!#1;!2,!#2;…+”. 



Radioactive smarts 

[!0,!#1;!1,!#1;!2,!#1;!0,!#2;!3,!#2;!4,!#2;!0,!#3;!6,!#3;!7,!#3;!0,!#4;!9,!#4;!0,!#5;!10,!#5;!11,!#5;!0,!#6;!12,!#6;!13,!#6;!0,!#7;!14,!
#7;!15,!#7;!0,!#8;!16,!#8;!17,!#8;!18,!#8;!0,!#9;!19,!#9;!0,!#10;!20,!#10;!21,!#10;!22,!#10;!0,!#11;!23,!#11;!0,!#12;!24,!#12;!25,!
#12;!26,!#12;!0,!#13;!27,!#13;!0,!#14;!28,!#14;!29,!#14;!30,!#14;!0,!#15;!31,!#15;!0,!#16;!32,!#16;!33,!#16;!34,!#16;!36,!#16;!0,
!#17;!35,!#17;!37,!#17;!0,!#18;!36,!#18;!38,!#18;!40,!#18;!0,!#19;!39,!#19;!41,!#19;!0,!#20;!40,!#20;!42,!#20;!43,!#20;!44,!#20;
!46,!#20;!0,!#21;!47,!#21;!0,!#22;!46,!#22;!47,!#22;!48,!#22;!49,!#22;!50,!#22;!0,!#23;!51,!#23;!0,!#24;!50,!#24;!52,!#24;!53,!#
24;!54,!#24;!0,!#25;!55,!#25;!0,!#26;!54,!#26;!56,!#26;!57,!#26;!58,!#26;!0,!#27;!59,!#27;!0,!#28;!58,!#28;!60,!#28;!61,!#28;!62,
!#28;!64,!#28;!0,!#29;!63,!#29;!65,!#29;!0,!#30;!64,!#30;!66,!#30;!67,!#30;!68,!#30;!70,!#30;!0,!#31;!69,!#31;!71,!#31;!0,!#32;!
70,!#32;!72,!#32;!73,!#32;!74,!#32;!0,!#33;!75,!#33;!0,!#34;!74,!#34;!76,!#34;!77,!#34;!78,!#34;!80,!#34;!0,!#35;!79,!#35;!81,!#
35;!0,!#36;!79,!#36;!80,!#36;!82,!#36;!83,!#36;!84,!#36;!86,!#36;!0,!#37;!85,!#37;!0,!#38;!84,!#38;!86,!#38;!87,!#38;!88,!#38;!0,
!#39;!89,!#39;!0,!#40;!90,!#40;!91,!#40;!92,!#40;!94,!#40;!96,!#40;!0,!#41;!93,!#41;!0,!#42;!92,!#42;!94,!#42;!95,!#42;!96,!#42;
!97,!#42;!98,!#42;!0,!#44;!96,!#44;!98,!#44;!99,!#44;!100,!#44;!101,!#44;!102,!#44;!104,!#44;!0,!#45;!103,!#45;!0,!#46;!102,!#4
6;!104,!#46;!105,!#46;!106,!#46;!108,!#46;!110,!#46;!0,!#47;!107,!#47;!109,!#47;!0,!#48;!106,!#48;!108,!#48;!110,!#48;!111,!#
48;!112,!#48;!114,!#48;!0,!#49;!113,!#49;!0,!#50;!112,!#50;!114,!#50;!115,!#50;!116,!#50;!117,!#50;!118,!#50;!119,!#50;!120,!
#50;!122,!#50;!124,!#50;!0,!#51;!121,!#51;!123,!#51;!0,!#52;!120,!#52;!122,!#52;!123,!#52;!124,!#52;!125,!#52;!126,!#52;!0,!#5
3;!127,!#53;!0,!#54;!124,!#54;!126,!#54;!128,!#54;!129,!#54;!130,!#54;!131,!#54;!132,!#54;!134,!#54;!136,!#54;!0,!#55;!133,!#
55;!0,!#56;!130,!#56;!132,!#56;!134,!#56;!135,!#56;!136,!#56;!137,!#56;!138,!#56;!0,!#57;!139,!#57;!0,!#58;!136,!#58;!138,!#5
8;!140,!#58;!142,!#58;!0,!#59;!141,!#59;!0,!#60;!142,!#60;!143,!#60;!145,!#60;!146,!#60;!148,!#60;!0,!#62;!144,!#62;!149,!#62;
!150,!#62;!152,!#62;!154,!#62;!0,!#63;!153,!#63;!0,!#64;!154,!#64;!155,!#64;!156,!#64;!157,!#64;!158,!#64;!160,!#64;!0,!#65;!1
59,!#65;!0,!#66;!156,!#66;!158,!#66;!160,!#66;!161,!#66;!162,!#66;!163,!#66;!164,!#66;!0,!#67;!165,!#67;!0,!#68;!162,!#68;!16
4,!#68;!166,!#68;!167,!#68;!168,!#68;!170,!#68;!0,!#69;!169,!#69;!0,!#70;!168,!#70;!170,!#70;!171,!#70;!172,!#70;!173,!#70;!1
74,!#70;!176,!#70;!0,!#71;!175,!#71;!0,!#72;!176,!#72;!177,!#72;!178,!#72;!179,!#72;!180,!#72;!0,!#73;!180,!#73;!181,!#73;!0,!
#74;!182,!#74;!183,!#74;!184,!#74;!186,!#74;!0,!#75;!185,!#75;!0,!#76;!184,!#76;!187,!#76;!188,!#76;!189,!#76;!190,!#76;!192,
!#76;!0,!#77;!191,!#77;!193,!#77;!0,!#78;!192,!#78;!194,!#78;!195,!#78;!196,!#78;!198,!#78;!0,!#79;!197,!#79;!0,!#80;!196,!#80
;!198,!#80;!199,!#80;!200,!#80;!201,!#80;!202,!#80;!204,!#80;!0,!#81;!203,!#81;!205,!#81;!0,!#82;!204,!#82;!206,!#82;!207,!#8
2;!208,!#82] 



Comparative performance 

OEChem 1.7 (C++) ChemAxon 5.5 (Java) 

Total Match Total Match 

Time to read file 8.05s 47.57s 

Time to match ‘*!0+’ 8.32s 0.27s 53.74s 6.17s 

`radioactive.sma` 102.60s 94.55s 65.05s 17.48s 

* Issues with OpenBabel, RDKit and CDK 



Interpreters vs compilers 

• Most SMARTS matchers are implemented as 
“interpreters”, that parse the SMARTS string at run-
time, build an internal parse tree, and then 
repeatedly traverse this at match-time. 

• This is analogous to Perl and Python. 

• For static patterns, the SMARTS may be compiled 
(parsed and optimized) ahead of time for faster 
execution at match-time. 



generated OECHEM source code 

#include <oechem.h> 

 

bool isRadioactive(const OEChem::OEMolBase &mol) { 

  OESystem::OEIter<OEChem::OEAtomBase> atom; 

  for (atom = mol.GetAtoms(); atom; ++atom) { 

    const OEChem::OAtomBase *aptr = atom; 

    switch (aptr->GetAtomicNum()) { 

    case 1: 

      switch (aptr->GetIsotope()) { 

      case 0: 

      case 1: 

      case 2: 

        break; 

      default: 

        return true; 

 



generated jchem source code 

static boolean isRadioactive(chemaxon.struc.Molecule mol) { 

  int count = mol.getAtomCount(); 

  for (int i=0; i<count; i++) { 

    chemaxon.struc.MolAtom atom = mol.getAtom(i); 

    switch (atom.getAtno()) { 

    case 1: 

      switch (atom.getMassno()) { 

      case 0: 

      case 1: 

      case 2: 

        break; 

      default: 

        return true; 

      } 

      break; 

  



Compiled matching performance 

OEChem 1.7 (C++) ChemAxon 5.5 (Java) 

Total Match Total Match 

Time to read file 8.05s 47.57s 

Time to match ‘*!0+’ 8.32s 0.27s 53.74s 6.17s 

`radioactive.sma` 102.60s 94.55s 65.05s 17.48s 

isRadioactive code 8.21s 0.16s 47.60s 0.03s 

Speed-up ~12.5x ~580x ~1.38x ~700x 



Patsy “backend” targets 

• OEChem (C++/Python/Java) 

• OpenBabel (C++) 

• RDKit (C++/Python) 

• CDK (Java) 

• Cinfony/Pybel (Python) 

• PerlMol (Perl) 

• Pipeline Pilot (PilotScript) 

• Isentris (Cheshire) 



Isomorphism counting 

• Match counts are frequently used in filtering apps. 

• A benchmark of match iteration performance is to 
count the isomorphisms of ferrocene (to itself). 

• SMILES: C12C3[Fe]1456789(C2C4C5C3)C1C6C7C8C91 

• The correct answer is 200. 

• OpenEye’s OEChem v1.7 takes 3.461s 

• A (Patsy) compiled C++ matcher using OEChem v1.7 
takes only 0.008s. 



Match generators 

• Almost all cheminformatics toolkits provide a 
mechanism for returning the set of matchings of a 
given query pattern against a target. 

• Most such implementations are “eager”; determining 
all solutions in advance. 

• A more efficient, but technically more challenging 
solution, is to provide a “lazy” iterator (called a 
generator in python) reducing both run-time and 
memory. 



Tripos Sybyl atom types 

# Carbon atom types 

[#6+]   C.cat 

[c]   C.ar 

[$(C#*),$(C(=*)=*)] C.sp 

C=*   C.sp2 

[#6]   C.sp3 

 

#Oxygen atom types 

[$(OC=O),$(O=CO)] O.co2 

O=*   O.2 

[#8]   O.3 

# Nitrogen atom types 

[nX2]   N.ar 

[#7X4]   N.4 

NC=[O,S]  N.am 

[NX2]=*   N.2 

[$(N=*),$(N*=*),$(Na),n] N.pl3 

[#7]   N.3 

 

# Hydrogen atom type 

[#1]   H 

 



Merck mmff94 atom types 

• Halgren’s MMFF94 forcefields use 216 atom 
types internally [96 external atom types] 

 

[OX1]=[#6]~[#7] O=CN 

[OX1]=[#6]~[#8] O=CO 

[OX1]=[#6]~[#6] O=CR 

[OX1]=[#6]  O=C 

[OX1]=[#7]  O=N 

[OX1]=S=*  O=S= 

[OX1]=S  O=S 

 

 



Iupac suffix atom types 

• OpenEye’s Lexichem internally uses a system of 
~1034 atom types for determining the principal suffix 
during IUPAC name generation. 
 

[CX3](=[OX1])-[OX1-]  carboxylate 

[CX3](=[OX1])-[OHX1]  carboxylic acid 

[CX3](=[OX1])-[OX2]  carboxylic acid ester 

[CX3](=[OX1])-[NX3]  amide 

[CX3](=[OX1])-[NX3]-[NX3] hydrazide 

[CX3H]=[OX1]   aldehyde 

[CX3H0]=[OX1]  ketone 

[OHX1]-[#6]   alcohol 



Morgan matching 

• An efficient way of matching multiple suitable acyclic 
patterns is to use a method much like Morgan’s 
algorithm for canonical graph labels. 

• In a first pass each vertex is assigned an atom type 
based purely on its constitution. 

• In subsequent passes, each atom’s type is updated 
based on its type and the types of its neighbours. 

 



Morgan matching in lexichem 

• In a first pass, atoms are assigned: 1 for [CX3], 2 for 
[OX1H0], 3 for [OX1H1], 4 for [NX3] and so on. 

• In a second pass, the types of neighbours are used to 
update types: such that 1s can become 5 if they have 
neighbours of types 2 and 3, 6 if they have 2 and 4, 
and 4s can become 7s if they have a nbor of type 4. 

• In a third pass, amides (type 6) can become type 8 
(hydrazides) if they have a nbor of type 7 (hydrazine).  

  

• All 1034 atom types are fully  assigned in four passes. 



Morgan matching & Backtracking 

• Iterative Morgan matching can work well for suitable 
acyclic patterns but is insufficient for ring matching. 

• However, hybrid algorithms that combine MM with 
regular backtracking offer performance advantages. 

• Consider the problem of searching for steroids. 

• SMILES: C1CCC2C1CCC3C2CCC4CCCCC34 

• SMARTS: [#6R2]~1~[#6R2]~[#6R2]~[#6R3]~2~[#6R3] 
~1~[#6R2]~[#6R2]~[#6R3]~3~[#6R3]~2~[#6R2] 
~[#6R2]~[#6R3]~4~[#6R2]~[#6R2]~[#6R2]~[#6R2] 
~[#6R3]~3~4 



Steroid First pass 
2x11 
3x6 

2(2,2) → 4 2(2,3) → 5 
3(2,2,3) → 6 3(2,3,3) → 8  



Steroid second pass 
4x3 
5x8 
6x2 
7x4 

4(4,5) → 8 4(5,5) → 9 
5(4,6) → 10 5(4,7) → 11 5(5,6) → 12 5(5,7) → 13 
6(5,5,7) → 14 
7(5,6,7) → 15 7(5,7,7) → 16  



Steroid third pass 
  8x2 
  9x1 
10x2 
11x2 
12x2 
13x2 
14x2 
15x2 
16x2 

4(4,5) → 8 4(5,5) → 9 
5(4,6) → 10 5(4,7) → 11 5(5,6) → 12 5(5,7) → 13 
6(5,5,7) → 14 
7(5,6,7) → 15 7(5,7,7) → 16  



Ecfp ATOM type hierarchy 

1 

2 3 

5 4 6 7 

8 9 10 11 12 13 14 15 16 



Mdl maccs 166-bit keys 

• MDL’s public key set of 166 substructure fragments is 
widely used in 2D similarity and clustering 
applications. 

• OpenBabel, RDKit, CDK and others distribute the set 
of 164 SMARTS patterns corresponding to each bit of 
the binary fingerprint. 

• For an excellent discussion on “MACCS SMARTS 
pattern definitions” see Andrew Dalke’s post at 
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html 

http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html


Mdl 166-bit maccs keys 

• 150 regular patterns, 8 atom pattern counts and 6 
complex pattern counts. 

• Relationships between patterns non-obvious 

– BIT 137 (HETEROCYCLE)  [!C;!c;R] 

– BIT 120 (HETEROCYCLIC ATOM > 1) [!#6;R] 

• Counting semantics is unusual 

– BIT 127 (A$A!O > 1)        *#8+!@*@*  →  *#8+!@*R+ 

• Monoatomic vs. polyatomic SMARTS 

– BIT 112 (AA(A)(A)A) *~*(~*)(~*)~* → [!D0!D1!D2!D3] 

    Not the same as [X4] or [D4]!  

 



Maccs element bits 

• 20 bits may trivially be set using a table or by 
“switch”ing on the atomic number of the atom 

– BITS 2 (ATOMIC NO > 103), 3 (GROUPS IVA, VA and VIA), 4 
(ACTINIDES), 5 (GROUPS IIB and IVB), 6 (LANTHANIDES), 7 
(GROUPS VB, VIB and VIIB), 9 (GROUP VIII), 10 (GROUP IIA), 
12 (GROUP IB and IIB), 18 (GROUP IIIA), 20 (SI), 27 (I), 29 
(P), 35 (GROUP IA), 42 (F), 46 (BR), 88 (S), 103 (CL), 161 (N) 
and 164 (O). 

• But with a switch statement, BIT 134 (HALOGEN), 
defined as [F,Cl,Br,I] can also be handled, by setting 
multiple bits for some elements. 



Maccs bond bits #1 

• For asymmetric single bond SMARTS patterns it is more 
efficient to match the rarer side first. 

– BIT 24: [#7]-[#8] (9%) is faster than [#8]-[#7] (13%) 

– BIT 31: [F,Cl,Br,I]~[!#6!#1] (2.4%) than [!#6!#1]~[F,Cl,Br,I] (27%) 

– BIT 33: [#16]~[#7] (1.5%) is better than [#7]~[#16] (9%) 

– BIT 67: [#16]~[!#6!#1] (1.5%) than [!#6!#1]~[#16] (27%) 

– BIT 119: [#7]=* (9%) is better than *=[#7] (100%) 

– BIT 157: [#8]-[#6] (13%) is better than [#6]-[#8] (73%) 

– BIT 158: [#7]-[#6] (9%) is better than [#6]-[#7] (73%) 



Maccs bond bits #2 

• Sometimes its is more efficient to start the search 
from a bond rather than an atom. 

• BIT 41 (CTC): [#6]#[#6] 

1. Loop over all atoms for carbons (3.9M/5.4M) 
then search for adjacent triple bonds 
(20K/9.0M). 

2. Loop over all bonds for triples (18K/5.7M) then 
check both ends for being carbons. 

• Likewise for BIT 41 (CTN): [#6]#[#7] 



To count or not to count #1 

• Theoretically its is more efficient to count (single 
atom) patterns than repeat them multiple times in 
the SMARTS string. 

• Consider BIT 140 (O>3): [#8].[#8].[#8].[#8] 

• This should be more efficient as count([#8]) > 3. 

• The first scans a molecule with 3 oxygens 16 times! 
 

• Alas as mentioned earlier poor implementations of 
“count” may always allocate memory proportional to 
the number oxygens in the molecule (think protein!) 



To count or not to count #2 

• For (polyatomic) SMARTS the book keeping 
associated with checking “unique” matches may 
significantly impact performance. 

• However sometimes it is possible/beneficial to 
transform “unique” counts into “exhaustive” counts. 

• BIT 130 (QQ > 1): [!#6!#1]~[!#6!#1] 

• In this case, it is possible and faster to eliminate the 
duplicate checking for ucount([!#6!#1]~[!#6!#1]) > 1 
and instead test for count([!#6!#1]~[!#6!#1]) > 2. 

 

 



Unique atoms vs unique bonds 

• Most subgraph isomorphism implementations 
provide a method of returning back matches that are 
atom unique. 

• However there are applications that require the set 
of bond unique subgraphs, which isn’t the same. 



Maccs ring bits 

• A significant fraction of time is spent on the ring bits 

– BITS 22 (3M RING), 11 (4M RING), 96 (5M RING), 163 (6M 
RING), 19 (7M RING) and 101 (8M RING). 

• How a ring SMARTS is expressed affects performance 

– *~1~*~*~*~1  Poor 

– *@1@*@*@*@1 Good 

– [R]~1~[R]~[R]~[R]~1 Better 

– [R]@1@*@*@*@1 Best 

• However the most significant improvements come 
from matching these ring patterns simultaneously. 



Maccs fingerprinting times 

Implementation Total Match 

File I/O 9.02s 

BIT 125 (AROM > 1) 9.54s 0.52s 

Original SMARTS 226.21s 217.19s 

OpenEye Impl 216.11s 207.09s 

Generated Impl 115.37s 106.28s 

Speed-up 1.96x 2.05x 



Derwent cpi codes 

• A far more complex “fragment fingerprint” are the 
CPI codes used by Derwent/Thompson Reuters to 
index the “World Patent Index”. 

• These codes form the basis of WPI structure 
searching in STNExpress. 

• CPI uses about 1080 substructure/fragment codes 
that can be assigned automatically. 



Cpi indexing example: ranitidine 

F012 – Mono-heterocycle substituted at 2-position 
F015 – Mono-heterocycle substituted at 5-position 
F111 – 5-Membered mono-heterocycle with 1 oxygen: C4H40; furan 
H102 – Secondary amine (N-atom not in a ring) 
H103 – Tertiary amine (N-atom not in a ring) 
H183 – > 2 Amino groups bonded to C-atom of aliphatic group 
H381 – 1 Nitro group bonded to non-cyclic (aliphatic) C-atom 
H598 – S-atom of thioether group bonded to C-atom of acyclic group (no ring atoms) 
H721 – 1 Unconjugated acyclic C=C 
L640 – N-C-U group (U is N, O, S, Se or Te) 
M211 – Methane or methyl group 
M413 – Organic with >=1 unfused heterocycles, but no fused heterocycles 
M521 – Organic containing 1 unfused heterocyclic ring 
M540 – Organic containing no non-aromatic carbocyclic rings. 



Cpi indexing example: rosuvastatin 

C316 – Inorganic sulphur, selenium or tellurium present with valency > 5 
F012 – Mono-heterocycle substituted at 2-position 
F541 – 6-membered mono-heterocycle with 2N; C4H4N2 (pyrimidine) 
G013 – 2 positions substituted on unfused benzene; 1,4- (para) 
G100 – 1 or more uncondensed benzenes with no other carbocycles 
H482 – 2 -OH groups bonded to C-atoms of acyclic groups 
H601 – Fluorine present [except in C(=[O,S])X or trifluoromethyl]  
H641 – 1 Halogen bonded to carbocyclic aromatic ring 
J011 – Total number of carboxylic acids, esters and amides = 1 
J171 – 1 C(=O)OH group bonded to C-atom of acyclic group or formic acid 
K353 – Other organic S-N groups 



Patent text mining 

• The classic example of pharmaceutical patent busting 
is the 2009 Bayer patent for Vardenafil (Levitra), 
entitled “2-phenyl substituted imidazotriazinones as 
phosphodiesterase inhibitors”, US patent number 
7,696,206(B2). 

 

• How much information can/could be mined from the 
title alone? 



2-phenyl substituted triazinones 



imidazotriazines 

All 14 imidazotriazines 



Backtracking state machine 
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Simultaneously matching all 14 imidazotriazine 
SMARTS can be accomplished by the above finite 
state machine (FSM).  A single SMARTS match is 
conceptually a linear state sequence. 



conclusions 

• The “compilation” of SMARTS patterns, Patsy, is 
shown to dramatically improve the run-time 
performance of subgraph matching. 

• The biggest gains are seen when matching multiple 
patterns, as compilation allows some patterns to be 
matched simultaneously. 

• Increasing speed leads to improvements in 
expressive power, enabling previously 
impossible/prohibitive applications/queries. 



Applications/Future work 

• Reaction Informatics 

– Matching of  a potentially large number of 
transformations for both normalization and 
synthetic/retrosynthetic analysis. 

• Markush Representation 

– Capturing the semantics/scope of pharmaceutical 
patent claims. 



Thank you for your time 

• Thanks again to the ICCS organisers. 

• And thanks for your questions. 


