
Efficient matching of
multiple chemical subgraphs

Roger Sayle

Nextmove software ltd

Cambridge uk

9th ICCS, Noordwijkerhout, The Netherlands, 9th June 2011

overview

• Chemical Pattern Matching

• Efficient Single Pattern Matching

• Multiple Pattern Matching

• Toolkit Code Generation

• Performance Figures

• Conclusions

Previous work

• Efficient Protein and Nucleic Acid Perception from
Simple Atomic Connectivity

www.daylight.com/meetings/mug96/sayle/sayle.html

Describes algorithms for perceiving protein sequence and
PDB atom names from SMILES, mol or XYZ file of a protein.

• 1st Class SMARTS patterns

www.daylight.com/meetings/emug97/Sayle/

Describes SMARTS syntax and SMARTS algebra, a set of
semantics preserving transformations that can be used to
optimize SMARTS patterns.

http://www.daylight.com/meetings/mug96/sayle/sayle.html
http://www.daylight.com/meetings/emug97/Sayle/

Chemical pattern matching

• The identification of a specific subgraph within a
graph, also known as subgraph isomorphism

• Typically to identify a functional group or
substructure in a molecule connection table.

• Query patterns are typically specified as SMARTS,
MDL query files, CDX or Marvin files.

• Matching is performed using

– Ullman’s isomorphism algorithm *1970+

– McGregor’s backtracking search *1981+

chemical database searching

• Although a backtracking atom-by-atom match is very
efficient for matching a single pattern against a single
molecule, well known optimizations exist for
scanning a large database of target molecules.

– Fingerprint screening/inverted indices

– Character frequency (histogram) screening

– “Triage” substructure identification
http://www.daylight.com/meetings/emug00/Sayle/substruct.html

http://www.daylight.com/meetings/emug00/Sayle/substruct.html

Toolkit (SMARTS?) performance

• Time taken to find O=[C,N]aa[N,O;!H0] hits in
250,251 SMILES of the NCI August 2000 data.

ToolKit Times (secs)

OpenEye OEChem v1.7 8.6

ChemAxon JChem v5.5 58.8

RDKit v2011_03_2 131.2

OpenBabel v2.3.0 272.5

PerlMol 2107.9

CDK v1.2.10 DNF

Cheminformatics applications

• Compound Filtering

• Fingerprint generation

– Database clustering

• Atom Typing

– Property prediction

filtering radioactive compounds

• A molecule is radioactive if any of its atoms are
radioactive. An atom is radioactive if its is not
“stable”.

• If an isotope is specified it must be one of the 255
known stable nuclides, otherwise the corresponding
element must have at least one stable isotope.

• Elements H to 82Pb, with exceptions of 43Tc and 61Pm.

• Hence stable is “*0#1,1#1,2#1,0#2,3#2,4#2…+”.

• Hence, radioactive is “*!0,!#1;!1,!#1;!2,!#2;…+”.

Radioactive smarts

[!0,!#1;!1,!#1;!2,!#1;!0,!#2;!3,!#2;!4,!#2;!0,!#3;!6,!#3;!7,!#3;!0,!#4;!9,!#4;!0,!#5;!10,!#5;!11,!#5;!0,!#6;!12,!#6;!13,!#6;!0,!#7;!14,!
#7;!15,!#7;!0,!#8;!16,!#8;!17,!#8;!18,!#8;!0,!#9;!19,!#9;!0,!#10;!20,!#10;!21,!#10;!22,!#10;!0,!#11;!23,!#11;!0,!#12;!24,!#12;!25,!
#12;!26,!#12;!0,!#13;!27,!#13;!0,!#14;!28,!#14;!29,!#14;!30,!#14;!0,!#15;!31,!#15;!0,!#16;!32,!#16;!33,!#16;!34,!#16;!36,!#16;!0,
!#17;!35,!#17;!37,!#17;!0,!#18;!36,!#18;!38,!#18;!40,!#18;!0,!#19;!39,!#19;!41,!#19;!0,!#20;!40,!#20;!42,!#20;!43,!#20;!44,!#20;
!46,!#20;!0,!#21;!47,!#21;!0,!#22;!46,!#22;!47,!#22;!48,!#22;!49,!#22;!50,!#22;!0,!#23;!51,!#23;!0,!#24;!50,!#24;!52,!#24;!53,!#
24;!54,!#24;!0,!#25;!55,!#25;!0,!#26;!54,!#26;!56,!#26;!57,!#26;!58,!#26;!0,!#27;!59,!#27;!0,!#28;!58,!#28;!60,!#28;!61,!#28;!62,
!#28;!64,!#28;!0,!#29;!63,!#29;!65,!#29;!0,!#30;!64,!#30;!66,!#30;!67,!#30;!68,!#30;!70,!#30;!0,!#31;!69,!#31;!71,!#31;!0,!#32;!
70,!#32;!72,!#32;!73,!#32;!74,!#32;!0,!#33;!75,!#33;!0,!#34;!74,!#34;!76,!#34;!77,!#34;!78,!#34;!80,!#34;!0,!#35;!79,!#35;!81,!#
35;!0,!#36;!79,!#36;!80,!#36;!82,!#36;!83,!#36;!84,!#36;!86,!#36;!0,!#37;!85,!#37;!0,!#38;!84,!#38;!86,!#38;!87,!#38;!88,!#38;!0,
!#39;!89,!#39;!0,!#40;!90,!#40;!91,!#40;!92,!#40;!94,!#40;!96,!#40;!0,!#41;!93,!#41;!0,!#42;!92,!#42;!94,!#42;!95,!#42;!96,!#42;
!97,!#42;!98,!#42;!0,!#44;!96,!#44;!98,!#44;!99,!#44;!100,!#44;!101,!#44;!102,!#44;!104,!#44;!0,!#45;!103,!#45;!0,!#46;!102,!#4
6;!104,!#46;!105,!#46;!106,!#46;!108,!#46;!110,!#46;!0,!#47;!107,!#47;!109,!#47;!0,!#48;!106,!#48;!108,!#48;!110,!#48;!111,!#
48;!112,!#48;!114,!#48;!0,!#49;!113,!#49;!0,!#50;!112,!#50;!114,!#50;!115,!#50;!116,!#50;!117,!#50;!118,!#50;!119,!#50;!120,!
#50;!122,!#50;!124,!#50;!0,!#51;!121,!#51;!123,!#51;!0,!#52;!120,!#52;!122,!#52;!123,!#52;!124,!#52;!125,!#52;!126,!#52;!0,!#5
3;!127,!#53;!0,!#54;!124,!#54;!126,!#54;!128,!#54;!129,!#54;!130,!#54;!131,!#54;!132,!#54;!134,!#54;!136,!#54;!0,!#55;!133,!#
55;!0,!#56;!130,!#56;!132,!#56;!134,!#56;!135,!#56;!136,!#56;!137,!#56;!138,!#56;!0,!#57;!139,!#57;!0,!#58;!136,!#58;!138,!#5
8;!140,!#58;!142,!#58;!0,!#59;!141,!#59;!0,!#60;!142,!#60;!143,!#60;!145,!#60;!146,!#60;!148,!#60;!0,!#62;!144,!#62;!149,!#62;
!150,!#62;!152,!#62;!154,!#62;!0,!#63;!153,!#63;!0,!#64;!154,!#64;!155,!#64;!156,!#64;!157,!#64;!158,!#64;!160,!#64;!0,!#65;!1
59,!#65;!0,!#66;!156,!#66;!158,!#66;!160,!#66;!161,!#66;!162,!#66;!163,!#66;!164,!#66;!0,!#67;!165,!#67;!0,!#68;!162,!#68;!16
4,!#68;!166,!#68;!167,!#68;!168,!#68;!170,!#68;!0,!#69;!169,!#69;!0,!#70;!168,!#70;!170,!#70;!171,!#70;!172,!#70;!173,!#70;!1
74,!#70;!176,!#70;!0,!#71;!175,!#71;!0,!#72;!176,!#72;!177,!#72;!178,!#72;!179,!#72;!180,!#72;!0,!#73;!180,!#73;!181,!#73;!0,!
#74;!182,!#74;!183,!#74;!184,!#74;!186,!#74;!0,!#75;!185,!#75;!0,!#76;!184,!#76;!187,!#76;!188,!#76;!189,!#76;!190,!#76;!192,
!#76;!0,!#77;!191,!#77;!193,!#77;!0,!#78;!192,!#78;!194,!#78;!195,!#78;!196,!#78;!198,!#78;!0,!#79;!197,!#79;!0,!#80;!196,!#80
;!198,!#80;!199,!#80;!200,!#80;!201,!#80;!202,!#80;!204,!#80;!0,!#81;!203,!#81;!205,!#81;!0,!#82;!204,!#82;!206,!#82;!207,!#8
2;!208,!#82]

Comparative performance

OEChem 1.7 (C++) ChemAxon 5.5 (Java)

Total Match Total Match

Time to read file 8.05s 47.57s

Time to match ‘*!0+’ 8.32s 0.27s 53.74s 6.17s

`radioactive.sma` 102.60s 94.55s 65.05s 17.48s

* Issues with OpenBabel, RDKit and CDK

Interpreters vs compilers

• Most SMARTS matchers are implemented as
“interpreters”, that parse the SMARTS string at run-
time, build an internal parse tree, and then
repeatedly traverse this at match-time.

• This is analogous to Perl and Python.

• For static patterns, the SMARTS may be compiled
(parsed and optimized) ahead of time for faster
execution at match-time.

generated OECHEM source code

#include <oechem.h>

bool isRadioactive(const OEChem::OEMolBase &mol) {

 OESystem::OEIter<OEChem::OEAtomBase> atom;

 for (atom = mol.GetAtoms(); atom; ++atom) {

 const OEChem::OAtomBase *aptr = atom;

 switch (aptr->GetAtomicNum()) {

 case 1:

 switch (aptr->GetIsotope()) {

 case 0:

 case 1:

 case 2:

 break;

 default:

 return true;

generated jchem source code

static boolean isRadioactive(chemaxon.struc.Molecule mol) {

 int count = mol.getAtomCount();

 for (int i=0; i<count; i++) {

 chemaxon.struc.MolAtom atom = mol.getAtom(i);

 switch (atom.getAtno()) {

 case 1:

 switch (atom.getMassno()) {

 case 0:

 case 1:

 case 2:

 break;

 default:

 return true;

 }

 break;

Compiled matching performance

OEChem 1.7 (C++) ChemAxon 5.5 (Java)

Total Match Total Match

Time to read file 8.05s 47.57s

Time to match ‘*!0+’ 8.32s 0.27s 53.74s 6.17s

`radioactive.sma` 102.60s 94.55s 65.05s 17.48s

isRadioactive code 8.21s 0.16s 47.60s 0.03s

Speed-up ~12.5x ~580x ~1.38x ~700x

Patsy “backend” targets

• OEChem (C++/Python/Java)

• OpenBabel (C++)

• RDKit (C++/Python)

• CDK (Java)

• Cinfony/Pybel (Python)

• PerlMol (Perl)

• Pipeline Pilot (PilotScript)

• Isentris (Cheshire)

Isomorphism counting

• Match counts are frequently used in filtering apps.

• A benchmark of match iteration performance is to
count the isomorphisms of ferrocene (to itself).

• SMILES: C12C3[Fe]1456789(C2C4C5C3)C1C6C7C8C91

• The correct answer is 200.

• OpenEye’s OEChem v1.7 takes 3.461s

• A (Patsy) compiled C++ matcher using OEChem v1.7
takes only 0.008s.

Match generators

• Almost all cheminformatics toolkits provide a
mechanism for returning the set of matchings of a
given query pattern against a target.

• Most such implementations are “eager”; determining
all solutions in advance.

• A more efficient, but technically more challenging
solution, is to provide a “lazy” iterator (called a
generator in python) reducing both run-time and
memory.

Tripos Sybyl atom types

Carbon atom types

[#6+] C.cat

[c] C.ar

[$(C#*),$(C(=*)=*)] C.sp

C=* C.sp2

[#6] C.sp3

#Oxygen atom types

[$(OC=O),$(O=CO)] O.co2

O=* O.2

[#8] O.3

Nitrogen atom types

[nX2] N.ar

[#7X4] N.4

NC=[O,S] N.am

[NX2]=* N.2

[$(N=*),$(N*=*),$(Na),n] N.pl3

[#7] N.3

Hydrogen atom type

[#1] H

Merck mmff94 atom types

• Halgren’s MMFF94 forcefields use 216 atom
types internally [96 external atom types]

[OX1]=[#6]~[#7] O=CN

[OX1]=[#6]~[#8] O=CO

[OX1]=[#6]~[#6] O=CR

[OX1]=[#6] O=C

[OX1]=[#7] O=N

[OX1]=S=* O=S=

[OX1]=S O=S

Iupac suffix atom types

• OpenEye’s Lexichem internally uses a system of
~1034 atom types for determining the principal suffix
during IUPAC name generation.

[CX3](=[OX1])-[OX1-] carboxylate

[CX3](=[OX1])-[OHX1] carboxylic acid

[CX3](=[OX1])-[OX2] carboxylic acid ester

[CX3](=[OX1])-[NX3] amide

[CX3](=[OX1])-[NX3]-[NX3] hydrazide

[CX3H]=[OX1] aldehyde

[CX3H0]=[OX1] ketone

[OHX1]-[#6] alcohol

Morgan matching

• An efficient way of matching multiple suitable acyclic
patterns is to use a method much like Morgan’s
algorithm for canonical graph labels.

• In a first pass each vertex is assigned an atom type
based purely on its constitution.

• In subsequent passes, each atom’s type is updated
based on its type and the types of its neighbours.

Morgan matching in lexichem

• In a first pass, atoms are assigned: 1 for [CX3], 2 for
[OX1H0], 3 for [OX1H1], 4 for [NX3] and so on.

• In a second pass, the types of neighbours are used to
update types: such that 1s can become 5 if they have
neighbours of types 2 and 3, 6 if they have 2 and 4,
and 4s can become 7s if they have a nbor of type 4.

• In a third pass, amides (type 6) can become type 8
(hydrazides) if they have a nbor of type 7 (hydrazine).

• All 1034 atom types are fully assigned in four passes.

Morgan matching & Backtracking

• Iterative Morgan matching can work well for suitable
acyclic patterns but is insufficient for ring matching.

• However, hybrid algorithms that combine MM with
regular backtracking offer performance advantages.

• Consider the problem of searching for steroids.

• SMILES: C1CCC2C1CCC3C2CCC4CCCCC34

• SMARTS: [#6R2]~1~[#6R2]~[#6R2]~[#6R3]~2~[#6R3]
~1~[#6R2]~[#6R2]~[#6R3]~3~[#6R3]~2~[#6R2]
~[#6R2]~[#6R3]~4~[#6R2]~[#6R2]~[#6R2]~[#6R2]
~[#6R3]~3~4

Steroid First pass
2x11
3x6

2(2,2) → 4 2(2,3) → 5
3(2,2,3) → 6 3(2,3,3) → 8

Steroid second pass
4x3
5x8
6x2
7x4

4(4,5) → 8 4(5,5) → 9
5(4,6) → 10 5(4,7) → 11 5(5,6) → 12 5(5,7) → 13
6(5,5,7) → 14
7(5,6,7) → 15 7(5,7,7) → 16

Steroid third pass
 8x2
 9x1
10x2
11x2
12x2
13x2
14x2
15x2
16x2

4(4,5) → 8 4(5,5) → 9
5(4,6) → 10 5(4,7) → 11 5(5,6) → 12 5(5,7) → 13
6(5,5,7) → 14
7(5,6,7) → 15 7(5,7,7) → 16

Ecfp ATOM type hierarchy

1

2 3

5 4 6 7

8 9 10 11 12 13 14 15 16

Mdl maccs 166-bit keys

• MDL’s public key set of 166 substructure fragments is
widely used in 2D similarity and clustering
applications.

• OpenBabel, RDKit, CDK and others distribute the set
of 164 SMARTS patterns corresponding to each bit of
the binary fingerprint.

• For an excellent discussion on “MACCS SMARTS
pattern definitions” see Andrew Dalke’s post at
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html

http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/msg01727.html

Mdl 166-bit maccs keys

• 150 regular patterns, 8 atom pattern counts and 6
complex pattern counts.

• Relationships between patterns non-obvious

– BIT 137 (HETEROCYCLE) [!C;!c;R]

– BIT 120 (HETEROCYCLIC ATOM > 1) [!#6;R]

• Counting semantics is unusual

– BIT 127 (A$A!O > 1) *#8+!@*@* → *#8+!@*R+

• Monoatomic vs. polyatomic SMARTS

– BIT 112 (AA(A)(A)A) *~*(~*)(~*)~* → [!D0!D1!D2!D3]

 Not the same as [X4] or [D4]!

Maccs element bits

• 20 bits may trivially be set using a table or by
“switch”ing on the atomic number of the atom

– BITS 2 (ATOMIC NO > 103), 3 (GROUPS IVA, VA and VIA), 4
(ACTINIDES), 5 (GROUPS IIB and IVB), 6 (LANTHANIDES), 7
(GROUPS VB, VIB and VIIB), 9 (GROUP VIII), 10 (GROUP IIA),
12 (GROUP IB and IIB), 18 (GROUP IIIA), 20 (SI), 27 (I), 29
(P), 35 (GROUP IA), 42 (F), 46 (BR), 88 (S), 103 (CL), 161 (N)
and 164 (O).

• But with a switch statement, BIT 134 (HALOGEN),
defined as [F,Cl,Br,I] can also be handled, by setting
multiple bits for some elements.

Maccs bond bits #1

• For asymmetric single bond SMARTS patterns it is more
efficient to match the rarer side first.

– BIT 24: [#7]-[#8] (9%) is faster than [#8]-[#7] (13%)

– BIT 31: [F,Cl,Br,I]~[!#6!#1] (2.4%) than [!#6!#1]~[F,Cl,Br,I] (27%)

– BIT 33: [#16]~[#7] (1.5%) is better than [#7]~[#16] (9%)

– BIT 67: [#16]~[!#6!#1] (1.5%) than [!#6!#1]~[#16] (27%)

– BIT 119: [#7]=* (9%) is better than *=[#7] (100%)

– BIT 157: [#8]-[#6] (13%) is better than [#6]-[#8] (73%)

– BIT 158: [#7]-[#6] (9%) is better than [#6]-[#7] (73%)

Maccs bond bits #2

• Sometimes its is more efficient to start the search
from a bond rather than an atom.

• BIT 41 (CTC): [#6]#[#6]

1. Loop over all atoms for carbons (3.9M/5.4M)
then search for adjacent triple bonds
(20K/9.0M).

2. Loop over all bonds for triples (18K/5.7M) then
check both ends for being carbons.

• Likewise for BIT 41 (CTN): [#6]#[#7]

To count or not to count #1

• Theoretically its is more efficient to count (single
atom) patterns than repeat them multiple times in
the SMARTS string.

• Consider BIT 140 (O>3): [#8].[#8].[#8].[#8]

• This should be more efficient as count([#8]) > 3.

• The first scans a molecule with 3 oxygens 16 times!

• Alas as mentioned earlier poor implementations of
“count” may always allocate memory proportional to
the number oxygens in the molecule (think protein!)

To count or not to count #2

• For (polyatomic) SMARTS the book keeping
associated with checking “unique” matches may
significantly impact performance.

• However sometimes it is possible/beneficial to
transform “unique” counts into “exhaustive” counts.

• BIT 130 (QQ > 1): [!#6!#1]~[!#6!#1]

• In this case, it is possible and faster to eliminate the
duplicate checking for ucount([!#6!#1]~[!#6!#1]) > 1
and instead test for count([!#6!#1]~[!#6!#1]) > 2.

Unique atoms vs unique bonds

• Most subgraph isomorphism implementations
provide a method of returning back matches that are
atom unique.

• However there are applications that require the set
of bond unique subgraphs, which isn’t the same.

Maccs ring bits

• A significant fraction of time is spent on the ring bits

– BITS 22 (3M RING), 11 (4M RING), 96 (5M RING), 163 (6M
RING), 19 (7M RING) and 101 (8M RING).

• How a ring SMARTS is expressed affects performance

– *~1~*~*~*~1 Poor

– *@1@*@*@*@1 Good

– [R]~1~[R]~[R]~[R]~1 Better

– [R]@1@*@*@*@1 Best

• However the most significant improvements come
from matching these ring patterns simultaneously.

Maccs fingerprinting times

Implementation Total Match

File I/O 9.02s

BIT 125 (AROM > 1) 9.54s 0.52s

Original SMARTS 226.21s 217.19s

OpenEye Impl 216.11s 207.09s

Generated Impl 115.37s 106.28s

Speed-up 1.96x 2.05x

Derwent cpi codes

• A far more complex “fragment fingerprint” are the
CPI codes used by Derwent/Thompson Reuters to
index the “World Patent Index”.

• These codes form the basis of WPI structure
searching in STNExpress.

• CPI uses about 1080 substructure/fragment codes
that can be assigned automatically.

Cpi indexing example: ranitidine

F012 – Mono-heterocycle substituted at 2-position
F015 – Mono-heterocycle substituted at 5-position
F111 – 5-Membered mono-heterocycle with 1 oxygen: C4H40; furan
H102 – Secondary amine (N-atom not in a ring)
H103 – Tertiary amine (N-atom not in a ring)
H183 – > 2 Amino groups bonded to C-atom of aliphatic group
H381 – 1 Nitro group bonded to non-cyclic (aliphatic) C-atom
H598 – S-atom of thioether group bonded to C-atom of acyclic group (no ring atoms)
H721 – 1 Unconjugated acyclic C=C
L640 – N-C-U group (U is N, O, S, Se or Te)
M211 – Methane or methyl group
M413 – Organic with >=1 unfused heterocycles, but no fused heterocycles
M521 – Organic containing 1 unfused heterocyclic ring
M540 – Organic containing no non-aromatic carbocyclic rings.

Cpi indexing example: rosuvastatin

C316 – Inorganic sulphur, selenium or tellurium present with valency > 5
F012 – Mono-heterocycle substituted at 2-position
F541 – 6-membered mono-heterocycle with 2N; C4H4N2 (pyrimidine)
G013 – 2 positions substituted on unfused benzene; 1,4- (para)
G100 – 1 or more uncondensed benzenes with no other carbocycles
H482 – 2 -OH groups bonded to C-atoms of acyclic groups
H601 – Fluorine present [except in C(=[O,S])X or trifluoromethyl]
H641 – 1 Halogen bonded to carbocyclic aromatic ring
J011 – Total number of carboxylic acids, esters and amides = 1
J171 – 1 C(=O)OH group bonded to C-atom of acyclic group or formic acid
K353 – Other organic S-N groups

Patent text mining

• The classic example of pharmaceutical patent busting
is the 2009 Bayer patent for Vardenafil (Levitra),
entitled “2-phenyl substituted imidazotriazinones as
phosphodiesterase inhibitors”, US patent number
7,696,206(B2).

• How much information can/could be mined from the
title alone?

2-phenyl substituted triazinones

imidazotriazines

All 14 imidazotriazines

Backtracking state machine

0

1
N

14

C

6

8

N

7
C

5
C

11

N

10
C

13
C

N

9
C

20
C

2

3

N

4
C

C

N

12
C

C

16 17
C

15
C

N

N

18
NN

N

19
N

N

Simultaneously matching all 14 imidazotriazine
SMARTS can be accomplished by the above finite
state machine (FSM). A single SMARTS match is
conceptually a linear state sequence.

conclusions

• The “compilation” of SMARTS patterns, Patsy, is
shown to dramatically improve the run-time
performance of subgraph matching.

• The biggest gains are seen when matching multiple
patterns, as compilation allows some patterns to be
matched simultaneously.

• Increasing speed leads to improvements in
expressive power, enabling previously
impossible/prohibitive applications/queries.

Applications/Future work

• Reaction Informatics

– Matching of a potentially large number of
transformations for both normalization and
synthetic/retrosynthetic analysis.

• Markush Representation

– Capturing the semantics/scope of pharmaceutical
patent claims.

Thank you for your time

• Thanks again to the ICCS organisers.

• And thanks for your questions.

