

HIGHER QUALITY CHEMICAL DEPICTIONS: Lessons Learned and Advice

John Mayfield NextMove Software Ltd

Chemistry Development Kit

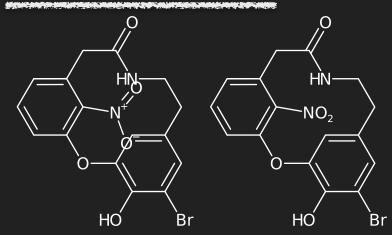
- Java Library, KNIME Nodes, RCDK
- 16 years old
- 115 contributors
- History in Computer Assisted Structure Elucidation

Many **legacy APIs** and bad wrong **algorithms** and **data structures**. Many of my contributions have focussed on core functionality because I needed it for my PhD at the time

"Every **PhD student** in cheminformatics writes their own toolkit" "Every **company** in cheminformatics writes their own toolkit"

During writing of thesis (2013) I needed publication quality depictions. Existing FOSS and affordable commercial offerings below par (didn't want a ChemDraw license for such a short period)

Improvements


"John will show us what good coordinate generation looks like" - Greg Landrum

LAYOUT

"Structure Diagram Generation"

- -Position atoms X,Y coords
- -Orientation
- -Wedge assignment
- -Objective (overlaps)
- Subject (orientation)

OPEN PROBLEM:

RENDERING

- "Drawing"
- -Generate and position graphic primitives
- -Atom Label alignment
- -Fonts
- -Annotation coordinates
- -Display Shortcuts (Abbreviations)
- -Subjective (color, donuts)

Homework

2D Layout Literature

Clark, A et al. 2D Structure Depiction. J. Chem. Inf. Model. 2006. 46(3)

Helson, H. **Structure Diagram Generation.** *Reviews in Computational Chemistry, Volume 13.* 1999. Ch 6

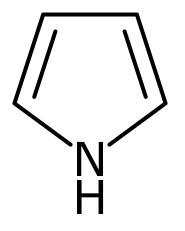
Weininger, D. SMILES. 3. Depict. Graphical Depiction of Chemical Structures. J. Chem. Inf. Comput. Sci. 1990. 30(3).

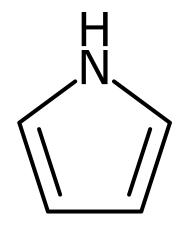
Rendering Literature

Brecher J. Graphical Representation Standards For Chemical Structure Diagrams (IUPAC Recommendations 2008). Pure Appl. Chem. 2008. 80(2)

Clark, A et al. Rendering Molecular Sketches for Publication Quality Output. *Molecular Informatics*. 2013. 32

Cambridge Soft. CDX File Format. Online: http://www.cambridgesoft.com/


Clark, A *et al.* **Basic primitives for molecular diagram sketching.** *J. Cheminf.* 2010. 2(8)


Gushurst, A et al. The Substance Module: The Representation, Storage, and Searching of Complex Structures. J. Chem. Inf. Comput. Sci. 1991. 31.

LAYOUT

RDKit algorithm, better architecture than **CDK**. My recent patches treat "symptom over cause", but useful:

- (1) Ring templates
- (2) Macrocycle templates
- (3) Layout refinement (fix collisions)
- (4) Humpty Dumpty

WHICH WAY UP?

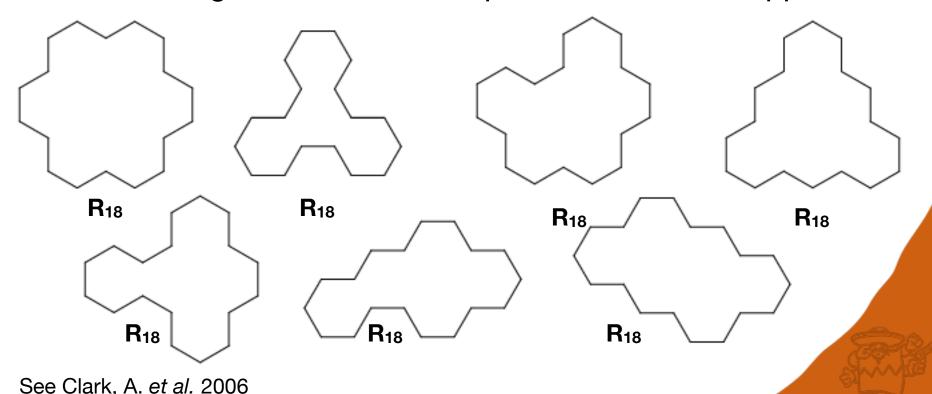
Canonical Ring Indexing

Each template ring system is **indexed** in three ways, **lookup** follows the same order

Capture standard orientations (algorithm fallback possible)

Generated library from hand drawn structures - duplication needed (algorithm or hand curated)

Possible sources: **ChEBI, Suppliers, Patents, Journals**Stored as CXSMILES in CDK


```
*1**C*1 | (1.21, .39, ; .75, -1.03, ; -1.03, ; -1.21, .39, ; .0, 1.28, ) |
```

Macrocycle Indexing

Index multiple layouts for even ring size

Selects **multiple** templates and scores **registry shifts** based on: ring attach points, cis/trans correctness, heteroatom positions.

Odd size rings use the *n+1* template, last coord dropped.

RDDepictor.cpp

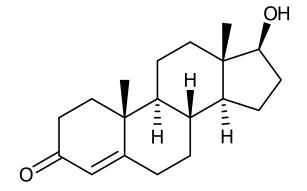
```
computeInitialCoords(mol, coordMap, efrags);
std::list<EmbeddedFrag>::iterator eri;
// perform random sampling here to improve the density
for (eri = efrags.begin(); eri != efrags.end(); eri++) {
 // either sample the 2D space by randomly flipping rotatable
 // bonds in the structure or flip onyl bonds along the shortest
 // path between colliding atoms - don't do both
  if ((nSamples > 0) && (nFlipsPerSample > 0)) {
    eri->randomSampleFlipsAndPermutations(
        nFlipsPerSample, nSamples, sampleSeed, 0, 0.0, permuteDeg4Nodes)
  } else {
   eri->removeCollisionsBondFlip();
for (eri = efrags.begin(); eri != efrags.end(); eri++) {
    if there are any remaining collisions
 eri->removeCollisionsOpenAngles();
  eri->removeCollisionsShortenBonds();
```

Layout Refinement

RDKit CDK

- Initialise
 Initialise
- 2. Sample or Rotate 2. Rotate, Bend, Stretch, Invert
- 3. Shrink and Bend 3. Orientation
- 4. Orientation

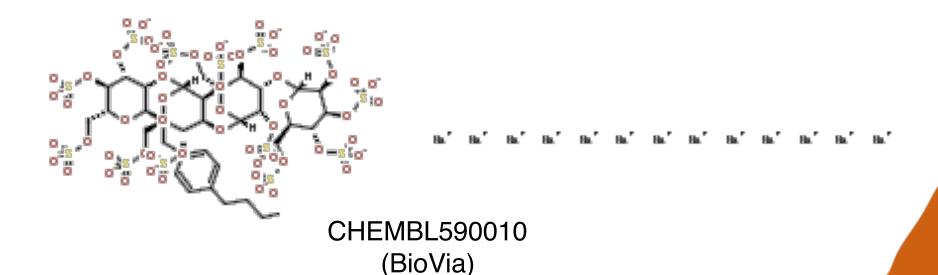
Rotate: flip rotatable bonds (most desirable, optimal)


Bend: unsnap/open angles

Stretch: make bonds longer

Shrink: make bonds shorter

Invert: mirror a terminal bond inside a ring


Orientation

Mostly align principle ring system, rules ~IUPAC naming

- Core ring orientation (fused rings, steroids)
- Layout width/height (RDKit canonical orientation)
- Bond snapping (align to 30°)
- Symmetry (patented in US)

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king's horses and all the king's men
Couldn't put Humpty together again.

Rebond **monoatomic** ions before initial layout, delete after.

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king's horses and all the king's men
Couldn't put Humpty together again.

Layout Comparison

Open Babel Avalon RDKit CDK Indigo

Structure Layout Testset

Based on **28** structures the **10** obstacles from Clark, A. *et al.* 2006

- 1 new obstacle (11 total)
- 20 new structures (48 total) have a lot more

Previous post by **Noel O'Boyle** used random PubChem sample, too easy: http://baoilleach.blogspot.co.uk/2008/10/cheminformatics-toolkit-face-off.html

All layout algorithms make **mistakes** and produce <u>crowded</u> or even <u>misrepresent</u> (wrong) structures! CDK definitely still does this but also commercial offerings (see Clark 06). Emphasis here is on **silly mistakes** rather than **perfect layout**.

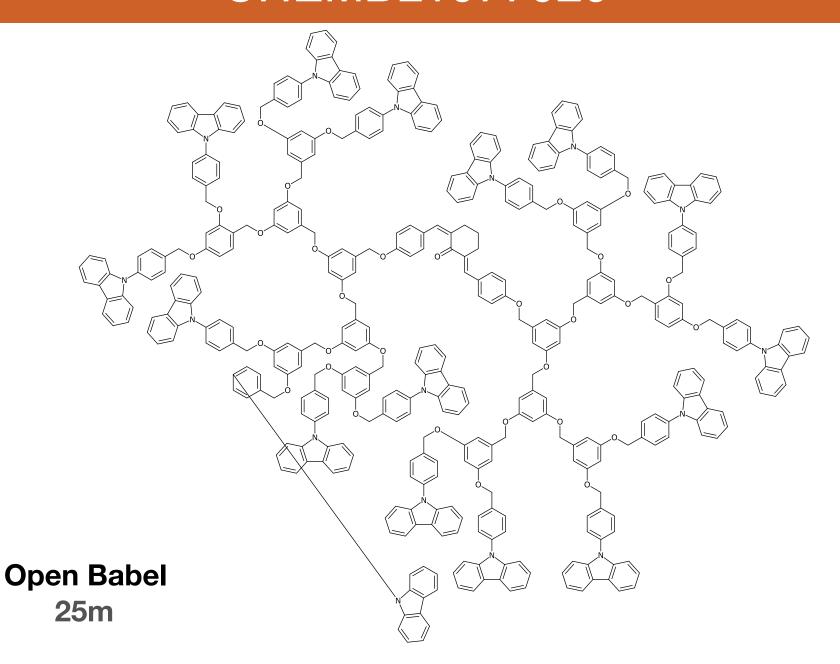
Evaluating layout only, all rendered with CDK here

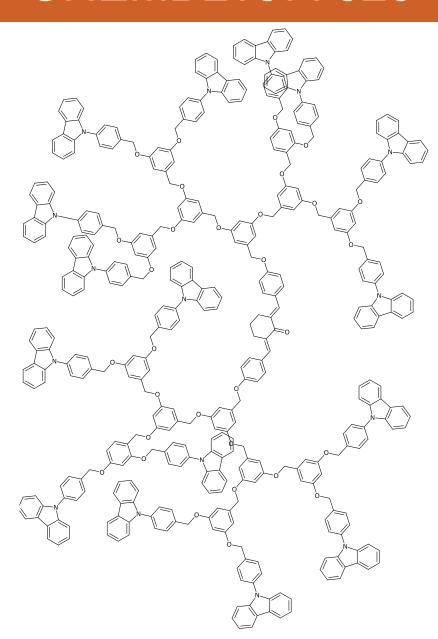
48 Structures 11 Obstacles

- 1. Find Optimal Solution avoidable overlaps (+2)
- 2. Suboptimal Solution unavoidable overlaps (+7)
- 3. Global Chain Blocks
- 4. Double Bond Stereochemistry (+3)
- 5. Congested Small Rings
- 6. Bonding Counterions (+2) *new*
- 7. Spirocenters
- 8. Macrocycles (+3)
- 9. Ring Template Matches (+1)
- 10. Planar Embedding
- 11. 3D Ring Systems (+2)

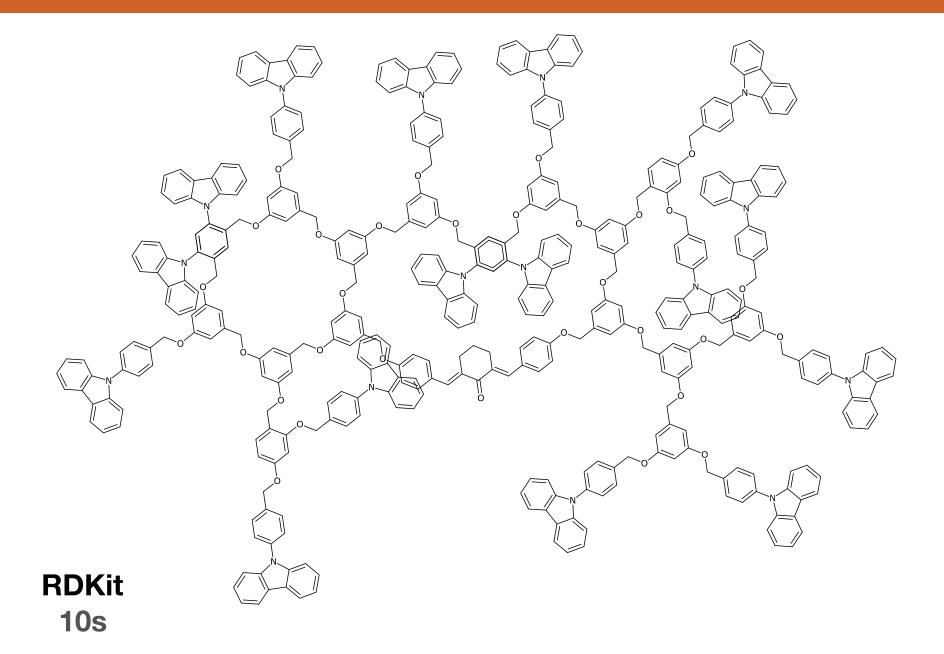
Performance

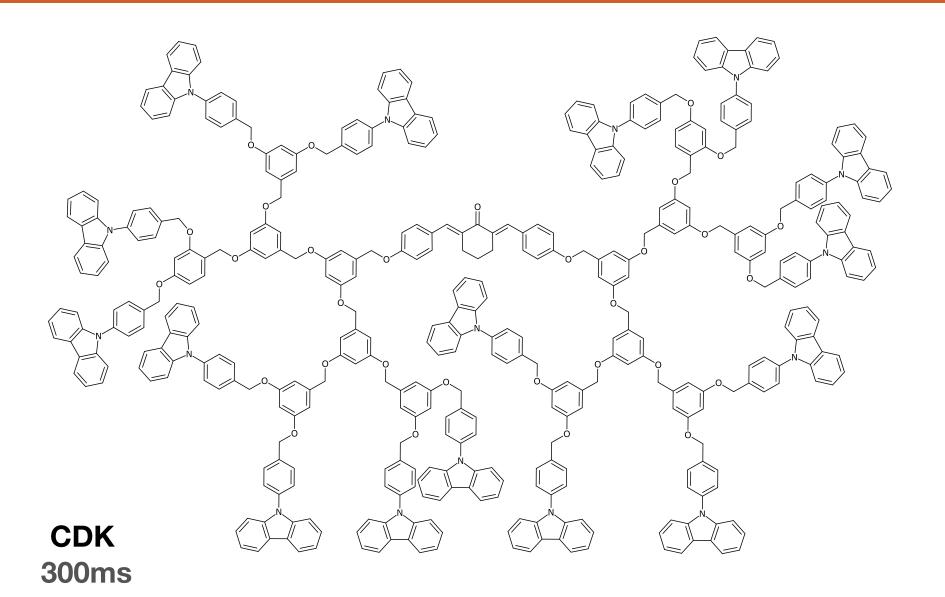
All **48** Structures

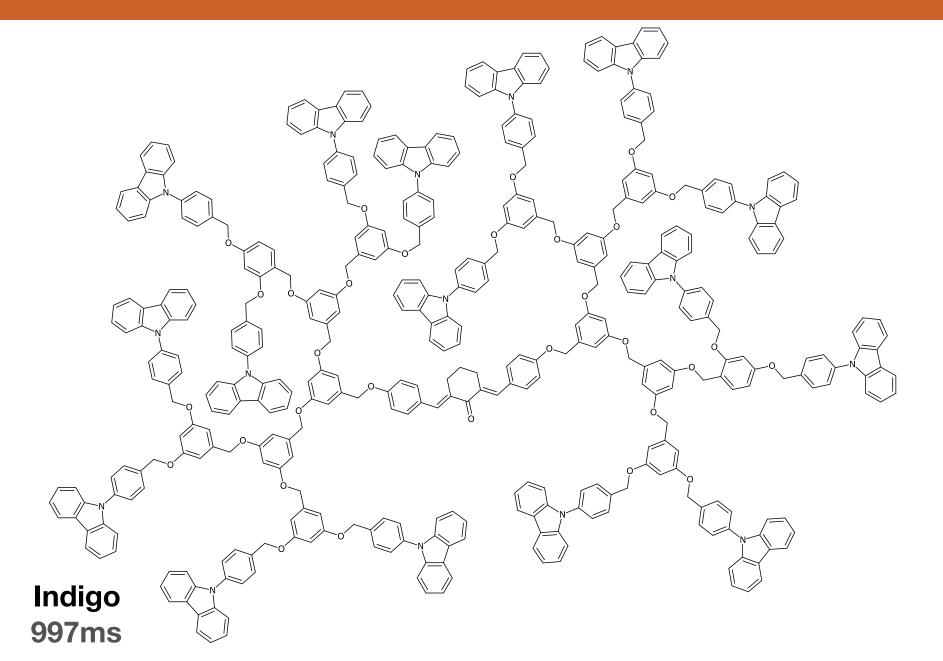

"Fair" 41 Subset


(skip 3D rings) (skip dendritic structure)

Library	Elapsed	Mean	Elapsed	Mean
Open Babel v2.4.1	25:59.0	-	1.9s	46ms
RDKit V2016.09.1.dev1	10.2s	214ms	0.1s	2ms
Avalon	0.3s	6ms	0.06s	1ms
CDK 2.0-SNAPSHOT	0.5s	9ms	0.06s	1ms
Indigo 1.2.3.r0 no-smart-layout	1.7s	35ms	0.05s	1ms


Level 1 - Find Optimal Solution


Open Babel	Avalon	RDKit	CDK	Indigo
S O N N N N N N N N N N N N N N N N N N	NH N S		HN O	S N N N N N N N N N N N N N N N N N N N
OH OH	OH OH	HOOH	OH OH	HOOH
OH NOH NOH	N OH N N	OH NOH NOH	OH N	OH N OH N OH
O,I,I,I	O, I,	O HO O O O O O O O O O O O O O O O O O	HO	O O O O O O O O O O O O O O O O O O O



Avalon 200ms

Level 2 - Suboptimal solution

Open Babel Avalon RDKit CDK Indigo

Level 2 - Suboptimal solution

Open Babel Avalon RDKit CDK Indigo

Level 2 - Suboptimal solution

Open Babel	Avalon	RDKit	CDK	Indigo
HO	10101	OHD OHD	HO	- Edito
	NH NO O			
ОН	HO O O O O O O O O O O O O O O O O O O	O O O O O O O O O O O O O O O O O O O	HO OOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOOO	HO O O O O O O O O O O O O O O O O O O

Level 4 - Cis/Trans Bonds

Open Babel Avalon RDKit CDK Indigo

Level 5 - Congested Rings

Avalon RDKit CDK **Open Babel** Indigo

Level 6 - Counterions

Open Babel Avalon RDKit CDK Indigo

Cs ⁺ O Cs ⁺	O ⁻ O Cs ⁺ Cs ⁺	Cs ⁺ O Cs ⁺	Cs ⁺	0-	O Cs ⁺	Cs ⁺	0 0)-
AII³ † 1+ H- H-	H H H H Al ³⁺ Li ⁺	H ⁻ H ⁻ Li ⁺ Al ³ H ⁻ H ⁻	Li ⁺	H⁻	H ⁻ Al ³⁺ H ⁻ H ⁻	H [−] Li ⁺		H ⁻

Level 8 - Macrocycles

Open Babel	Avalon	RDKit	CDK	Indigo +smart-layout		
HN O NH		NH O NH		O NH O NH O NH		
OH CI NOO NOO	HOOHOOO	HO CI	OH O IIIII	HO OH CI OH		
O C TO N		N O N		N. C.		

Level 8 - Macrocycles

Open Babel Avalon RDKit CDK +smart-layout

Level 9/10 - Ring Template/Embedding

Open Babel Avalon RDKit CDK Indigo

RENDERING

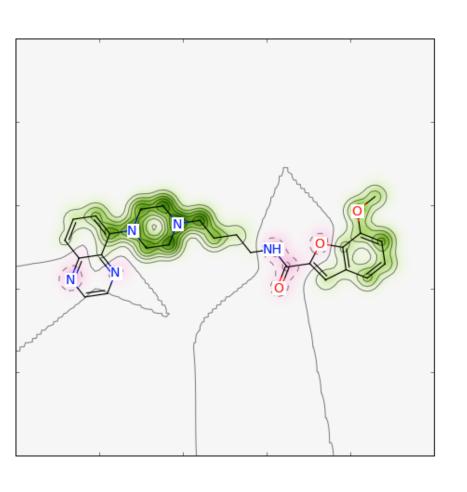
A lot of quick wins for **RDKit** are in improving rending capabilities.

Measurement and Parameters

Avoid "Angstroms" in layout (CDK) and drawing (RDKit), 2D depictions are **not** accurate or scale models!

px okay for raster but **pt, mm** better for vector graphics and publications

Journal Style: ACS 1996


Bond Spacing 18% $\dots \pi$ bond width Bond Length 14.4pt **Bold Width** 2pt ...wedge bond width Line Width 0.6pt Margin Width 1.6pt Hash Spacing 2.5pt Captions 10pt ...annotations **Atom Labels** 10pt

How Many <text> Elements in SVG?

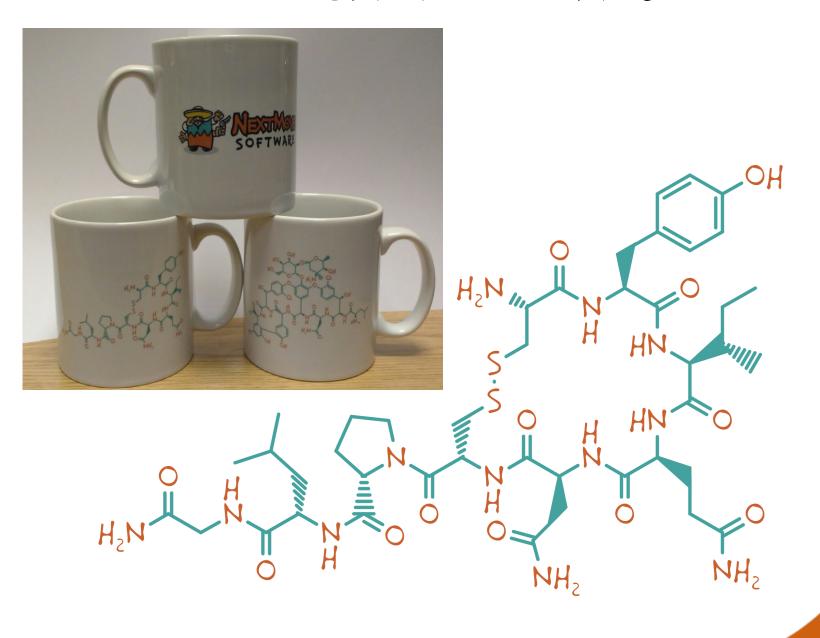
How Many <text> Elements?

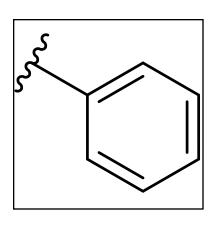
```
<q id='mol1atm19' class='atom'>
 <path d='M67.32 10.16q.11 .12 .17 .3q.06 .18 .06 .41q.0 .23 -.06 .41q-.06 .18 -.17 .3q-.1</pre>
 -.36 .06q-.19 .0 -.35 -.06q-.16 -.06 -.27 -.19q-.11 -.12 -.17 -.3q-.06 -.18 -.06 -.41q.0
 -.31g.11 -.12 .27 -.19g.16 -.06 .35 -.06g.2 .0 .36 .07g.16 .07 .27 .19zM67.3 10.87g.0 -.3
 -.2q-.28 .0 -.44 .2q-.16 .2 -.16 .56q.0 .36 .16 .56q.16 .19 .44 .19q.28 .0 .44 -.19q.16 -
 <path d='M69.18 11.79h-.25v-.9h-.92v.9h-.25v-1.85h.25v.72h.92v-.72h.25z' stroke='none'/>
</q>
<q id='mol1atm21' class='atom'>
 <path d='M56.06 16.19h-.3l-.88 -1.65v1.65h-.23v-1.85h.38l.8 1.51v-1.51h.23z' stroke='none</pre>
 <path d='M53.48 16.19h-.25v-.9h-.92v.9h-.25v-1.85h.25v.72h.92v-.72h.25z' stroke='none'/>
 <path d='M54.44 16.75h-.75v-.16q.08 -.07 .16 -.13q.08 -.07 .15 -.13q.14 -.14 .2 -.22q.05</pre>
 -.14q-.06 -.05 -.16 -.05q-.07 .0 -.15 .02q-.08 .02 -.15 .07v.0v-.16q.05 -.03 .14 -.05q.09
  .08q.1 .08 .1 .22q.0 .06 -.02 .12q-.02 .05 -.05 .1q-.03 .05 -.07 .09q-.04 .04 -.09 .1q-.0
 -.16 .14h.6z' stroke='none'/>
</g>
<g id='mol1atm22' class='atom'>
 <path d='M66.14 5.76q.11 .12 .17 .3q.06 .18 .06 .41q.0 .23 -.06 .41q-.06 .18 -.17 .3q-.13</pre>
  .06q-.19 .0 -.35 -.06q-.16 -.06 -.27 -.19q-.11 -.12 -.17 -.3q-.06 -.18 -.06 -.41q.0 -.23
 -.31q.11 -.12 .27 -.19q.16 -.06 .35 -.06q.2 .0 .36 .07q.16 .07 .27 .19zM66.12 6.47q.0 -.3
 -.2q-.28 .0 -.44 .2q-.16 .2 -.16 .56q.0 .36 .16 .56q.16 .19 .44 .19q.28 .0 .44 -.19q.16 -
 <path d='M68.0 7.39h-.25v-.9h-.92v.9h-.25v-1.85h.25v.72h.92v-.72h.25z' stroke='none'/>
</g>
```

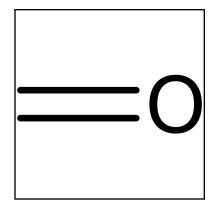
Font Embedding

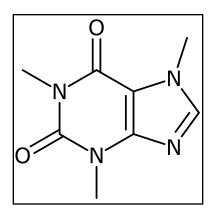
More Portable

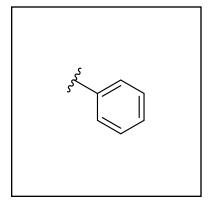
 H_2O

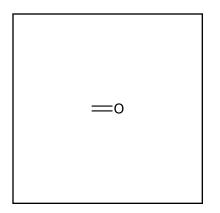

Convex Hull Bounds

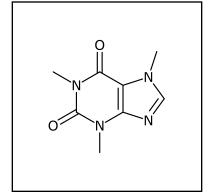

Bounding Box

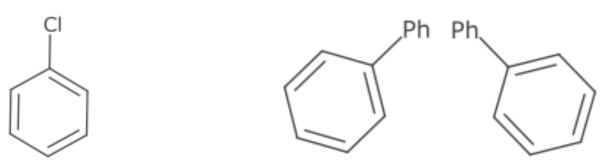

FUN WITH FONTS



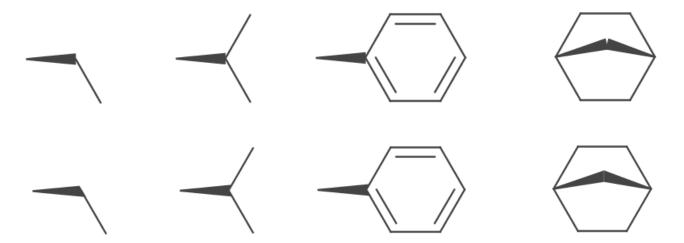

Depiction Scale


Control depiction size by **bond length** parameter. Shrink to fit, but avoid **stretch to fit** (make optional?).

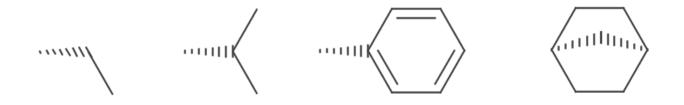




Adjunct Placement and Alignment

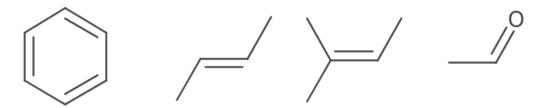

Hydrogen Placement

Alignment



Bold and Hashed Wedges

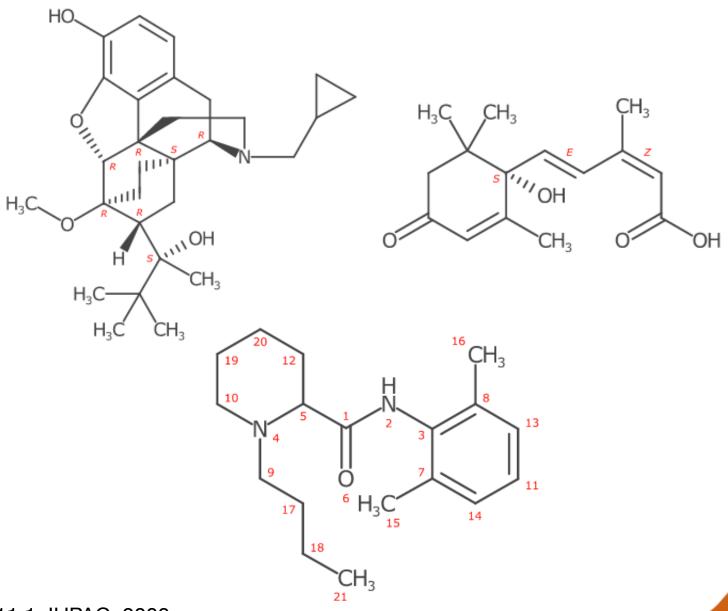
Slanting and Bifurcation of Wedges



Possible with hashes but controversial

Double Bonds

Offset Double Bonds


Which side? (General rule=more benzene!)

Centred Double Bonds

Annotations

Sgroups and Generic Features

Attachment Points

Substituent Labels "R" Groups

Positional Variation

Abbreviations

Structure Repeat Units

Abbreviations in Action

Abbreviations in Action

Colors

Layout + Rendering Comparison

Open Babel RDKit CDK Indigo

Layout + Rendering Comparison

Open Babel RDKit CDK Indigo

Acknowledgements

Constructive criticism of depictions: Roger Sayle, Daniel Lowe, Noel O'Boyle

Reviewing patches: **Egon Willighagen**

Initial CDK layout: Christoph Steinbeck

Seminal Papers: Alex Clark and Jonathan Brecher.

Spot the difference

RDKit CDK