

## ACCELERATING GRAPH EDIT DISTANCE SEARCH BY CHEMICAL SPACE ENUMERATION

**Roger Sayle, Richard Gowers and John Mayfield** 

NextMove Software, Cambridge, UK

#### MOTIVATION: CHEMICAL SIMILARITY

#### Evolution of SARS-CoV-2 (COVID-19) antivirals



## MOTIVATION: CHEMICAL SIMILARITY







#### Ampicillin (1961)



#### Amoxicillin (1972)

## EDIT DISTANCE

- Edit Distance is a measure of similarity (dissimilarity) between two discrete mathematical objects (formally a metric space).
  - String Edit Distance is a similarity metric between strings.
  - Tree Edit Distance is a similarity metric between trees.
  - Graph Edit Distance (GED) is a similarity metric between graphs.
- GED is the minimum number (or cost) of edit operations required to transform one graph into another.
- Edit operations consist of insertions, deletions and substitutions of nodes and edges (atoms and bonds).
- Unfortunately, computing GED is believed to be NP-Hard.

Alberto Sanfeliu and K.S. Fu, "A Distance Measure between Attributed Relational Graphs for Pattern Recognition", IEEE Transactions of Systems, Man and Cybernetics (SMC), Vol. 13, No. 3, pp. 353-362, 1983. https://en.wikipedia.org/wiki/Graph\_edit\_distance

# THE SMALLWORLD ALGORITHM

- SmallWorld is an algorithmic approach to accelerate graph edit distance searches on modern computer hardware.
- This approach makes heavy use of precomputation, increasing run-time performance at the expense of more storage space.
- A huge win from this trade-off is that database searches that used to scale linearly with increasing database size can now be performed in (near) constant time.
- "Fighting Big Data with bigger data".

# SMALLWORLD IN CONTEXT

- Traditional binary fingerprint similarity and substructure searching of chemical databases scale (nearly) linearly with the size of the database.
  - At 2M compounds per second, searching ChEMBL takes 1s, searching
    PubChem takes 50s, and searching Enamine REAL over 10 minutes.
- Using SmallWorld, the top 100 search hits can be found in a few seconds independent of the size of a database.
  - UCSF's ZINC group regularly searches tens of billions of compounds.



# A MAP OF CHEMICAL (GRAPH) SPACE

- The data structure underlying SmallWorld is a graph of graphs.
- Each vertex represents a molecule (with less than 99 bonds).
- Each edge represents an insertion or deletion edit operation.



Currently contains 380 billion vertices and 2.8 trillion edges.

## FIRST OF SEVERAL TRILLION TRIPLES

| **        | *        |
|-----------|----------|
| * * *     | **       |
| **(*)*    | ***      |
| * * * *   | ***      |
| *1**1     | ***      |
| **(*)(*)* | ** (*) * |
| ***(*)*   | ** (*) * |
| ***(*)*   | ****     |
| * * * * * | ****     |
| **1**1    | *1**1    |
| **1**1    | ** (*) * |
| **1**1    | ****     |
| *1***1    | ****     |
| *1***1    | *1**1    |

One representation of a SmallWorld graph index is as an tab-delimited ASCII text file, with two SMILES strings per line.

Such a file would contain 2,756,346,958,754 lines. and be 268.59TB in length. 14TB when gzip compressed.

# CAVEATS AND DISCLAIMERS

• Chemical (graph) space is infinite.

"Space is big. You just won't believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it's a long way down the road to the drug store, but that's just peanuts to space." - Douglas Adams, HHGTTG.

- Chemical graph space smaller than 100 (any fixed number of) bonds is finite, but impractical.
- Fortunately, we only care about subgraphs of molecules in our database, rather than all of theoretical graph space (GDB).
- Previously SmallWorld also had a maximum degree bound, no atoms with more than 4 neighbours, but this restriction has been lifted to support inorganics and groups such as -SF<sub>5</sub>.
- Fortunately, Hasse networks are robust.



SmallWorld lattice: Circles represent virtual subgraphs, bold circles denote molecules mapped to subgraphs.



| Dist | WF | New | Hits |
|------|----|-----|------|
| 0    | 1  | 1   | 1    |

The solid circle denotes a query structure which may be either an mapped molecule or a virtual subgraph.



| Dist | WF | New | Hits |
|------|----|-----|------|
| 0    | 1  | 1   | 1    |
| 1    | 5  | 0   | 1    |

The first iteration of the search adds the neighbours of the query to the "search wavefront".



| Dist | WF | New | Hits |
|------|----|-----|------|
| 0    | 1  | 1   | 1    |
| 1    | 5  | 0   | 1    |
| 2    | 13 | 2   | 3    |

Each subsequent iteration propagates the wavefront by considering the unvisited neighbours of the wavefront.



| Dist | WF | New | Hits |
|------|----|-----|------|
| 0    | 1  | 1   | 1    |
| 1    | 5  | 0   | 1    |
| 2    | 13 | 2   | 3    |
| 3    | 16 | 2   | 5    |

At each iteration, "hits" are reported as the set of mapped molecules that are members of the wavefront.



| Dist | WF | New | Hits |
|------|----|-----|------|
| 0    | 1  | 1   | 1    |
| 1    | 5  | 0   | 1    |
| 2    | 13 | 2   | 3    |
| 3    | 16 | 2   | 5    |
| 4    | 11 | 1   | 6    |

The search terminates once sufficient mapped neighbours have been found (or a suitable iteration limit is reached).



| Dist | WF | New | Hits |
|------|----|-----|------|
| 0    | 1  | 1   | 1    |
| 1    | 5  | 0   | 1    |
| 2    | 13 | 2   | 3    |
| 3    | 16 | 2   | 5    |
| 4    | 11 | 1   | 6    |
| 5    | 6  | 1   | 7    |



The use of breadth-first (or best-first) search is similar to the Graph500 benchmark of supercomputers, measured in TEPS. https://graph500.org/

## MILEAGE CHART ANALOGY

- SmallWorld is a domain index (like GPS), unlike the instance indexes found in database systems.
- A mileage chart can lookup distance between chosen mapped cities, and approximate other distances.

| Cambridge       |              |       |       |        |             |
|-----------------|--------------|-------|-------|--------|-------------|
| 352.9 Edinburgh |              |       |       |        |             |
| 65.3            | 396.0 London |       |       |        |             |
| 171.0           | 217.5        | 204.4 | Manch | ester  |             |
| 84.0            | 365.7        | 56.1  | 160.7 | Oxford |             |
| 132.5           | 430.2        | 79.9  | 225.2 | 66.3   | Southampton |

## NEXTMOVE SOFTWARE'S IMPLEMENTATION

- The preceding theoretical description should be sufficient to implement a SmallWorld system for performing Graph Edit Distance searches.
- In theory, the 2.8 trillion rows/triples could be loaded in Neo4J or Oracle and queried with SPARQL.
- The rest of this presentation covers the many clever implementation details that when combined allow for very efficient chemical database searching.

## GRAPH CANONICALIZATION

- The most important ingredient is canonical SMILES.
- Bounded degree (chemical) isomorphism is significantly easier than general case.
- The existence of canonical forms changes everything.
  - RDKit 2019
  - InChI (Open Babel)
    7320 mol/s
  - Open Babel
  - OpenEye OEChem
  - SWChem

10.3 Kmol/s 50 Kmol/s 113 Kmol/s

6815 mol/s

Schneider, Sayle and Landrum, "Get Your Atoms in Order-An Open-Source Implementation of a Novel and Robust Molecular Canonicalization Algorithm", J. Chem. Inf. Model. 55(10):2111-2120, 2015.

# EFFICIENT SUBGRAPH ENUMERATION

- A connected Maximum Common Edge Subgraph (MCES) with one less bond is formed by either
  - (i) deleting a bond to a terminal atom, or
  - (ii) deleting a ring (cyclic) bond.
- Assigning cyclic vs. acyclic bonds can be done efficiently in O(N) time, and this only needs to be recalculated after deleting a ring bond, as deleting terminal bonds doesn't affect ring membership.
- An "UndeleteBond" function is also beneficial.



## PARTITIONING VERTICES

Chemical/Graph space (is bipartite and) may be partitioned by the number of bonds.



## DATABASE PARTITIONING

- SmallWorld is actually partitioned by atoms, bonds, and rings [using the equation A=(B+1)-R].
- This results in 2842 partitions, named B<sub>x</sub>R<sub>y</sub> where x is the number of bonds, y is the number of rings.
- Each edge links vertices in neighbouring partitions.
  - A tdn edge from  $B_x R_y$  leads to  $B_{x-1} R_y$ , tup to  $B_{x+1} R_y$ .
  - A rdn edge from  $B_x R_y$  leads to  $B_{x-1} R_{y-1}$ , rup to  $B_{x+1} R_{y+1}$ .
  - A ldn edge from  $B_x R_y$  leads to  $B_{x-1} R_{y'}$  lup to  $B_{x+1} R_y$ .

### FIRST OF SEVERAL TRILLION TRIPLES

| **        | *        | B1R0/tdn |
|-----------|----------|----------|
| * * *     | **       | B2R0/tdn |
| ** (*) *  | ***      | B3R0/tdn |
| ****      | ***      | B3R0/tdn |
| *1**1     | ***      | B3R1/rdn |
| **(*)(*)* | ** (*) * | B4R0/tdn |
| ***(*)*   | ** (*) * | B4R0/tdn |
| ***(*)*   | ****     | B4R0/tdn |
| ****      | ****     | B4R0/tdn |
| **1**1    | *1**1    | B4R1/tdn |
| **1**1    | ** (*) * | B4R1/rdn |
| **1**1    | ****     | B4R1/rdn |
| *1***1    | ****     | B4R1/rdn |
| *1***1    | *1**1    | B4R1/ldn |

#### MAP OF SMALLWORLD SPACE



## SMALLWORLD DENSITY HEATMAPS



PubChem Compound



ChEMBL 23





# NUMBERING AND NAMING VERTICES

- The graphs in each partition (all having the same number of atoms, bonds and rings) are (arbitrarily) numbered sequentially from one.
- Hence any vertex may be referenced by ID: BxRy.Z
  - Penicillin G B25R3.284481020
  - Ampicillin B26R3.489483828
  - Amoxicillin B27R3.40995378
- Each edge can therefore be represented as a pair of integers, the src index and the dst index.

## VERTEX NUMBERING IN B6R1

• Mapping from graphs to indices in B6R1 looks like:

\*\*1\*\*(\*1)\* 1 \*\*1\*\*\*1\* 2 \*\*\*1\*\*\*13 \*\*\*\*1\*\*14 \*\*1\*\*\*\*15 \*\*(\*)\*1\*\*16 \*1\*\*\*\*17 \*\*\*1\*\*1\* 8 \*\*\*1(\*\*1)\* 9 \*\*1\*\*1(\*)\* 10 \*\*1(\*\*\*1)\* 11 \*\*1(\*\*1)(\*)\* 12 \*\*1\*(\*1\*)\* 13



# SPEEDING UP THE MAPPING PROCESS

- Determining the vertex ID for a given molecule is essentially a key-value pair (dictionary) lookup from canonical SMILES.
- Early versions of SmallWorld used binary search of a alphabetically sorted text file; faster than a RDBMS.
- The current implementation uses three refinements:
  - Custom multigram SMILES compression
    - https://www.daylight.com/meetings/mug01/Sayle/SmiZip/sld001.htm
  - Multiplicative Binary Search
    - https://en.wikipedia.org/wiki/Multiplicative\_binary\_search
  - Key-length partitioning for fixed length binary search.

## STORING VERTICES

 Using the techniques on the previous slide, the graphs of all 380 billion vertices are stored in only 4.2TB, or around 12 bytes per graph/SMILES.



# STORING EDGES: THE PRESENT

• Directional edges are stored in Compressed Sparse Row (CSR) format. https://en.wikipedia.org/wiki/Sparse\_matrix





# STORING EDGES: THE FUTURE

- Currently both tables use 5-byte (40 bit) pointers, as the max vertices/edges in a partition is >2<sup>32</sup> and <2<sup>40</sup>.
- The next iteration of SmallWorld will use packed integers, using custom widths for each table.
- As the typical fanout is low, the values in the pointer table are almost random, but first table is sorted, which allows for further compression.
  - By maintaining a directory of every N<sup>th</sup> value, every (other) value may be represented as a (smaller) delta from that previous reference, allowing compression+random access.

# CURRENT DATABASE STATISTICS

- As of March 2020, the SmallWorld index has
- 380,162,460,266 nodes (~380B or ~2<sup>38</sup> nodes)
- 2,756,346,958,754 edges (~2.8T or ~2<sup>42</sup> edges)
  - 1,472,058,112,318 ring edges.
  - 752,057,044,898 terminal edges
  - 532,231,801,538 linker edges.
- Average degree (fan-out) of node: ~14
- Runtime index requires 40TB of disk space.

## SEARCH ALGORITHMS

- Chemical similarity may be implemented using either breadth-first (BFS) or best-first search.
- Searches that only follow tup and rup edges implement "substructure" search.
- Searches that only follow tdn and rdn edges implement "superstructure" search.
- Searches that only follow tdn and tup edges find hits with the same Bemis-Murcko scaffold.

# SHORTEST PATH ALGORITHMS

- Finding the graph edit distance between a specified pair of molecules reduces to finding the shortest path between them.
- A well known improvement in computer science is to use bidirectional search to reduce the search from O(b<sup>d</sup>) to O(b<sup>d/2</sup>) where b is the branching factor.

– <u>https://en.wikipedia.org/wiki/Bidirectional\_search</u>

 Less widely known improvement is the variant of bidirectional search that at each iteration advances the smaller wavefront.

## ALGEBRA OF GRAPH EDIT OPERATIONS

- Symmetries with a SmallWorld network mean that there are often multiple paths (of the same distance) between a pair of vertices, and this can be useful in improving search performance by pruning edges.
- Perform all down edges before any up edges.
- Such paths pass through the MCES (inflection point).
- Likewise perform rdn before tdn, and rup after tup.
  Intuitively tdns don't affect rdns, but rdn may create tdns.
- All paths look like [rdn\*][tdn\*][ldn\*][lup\*][tup\*][rup\*].

#### BEWARE OF DALKE WORMHOLES



Shorter paths (called wormholes) may exist going via a minimal common superstructure; counter-intuitive to chemical similarity these may have applications in synthesis.

# AND FINALLY ... BLOOM FILTER JOINS

- As the BFS advances, each visited vertex needs to check the database molecules mapped to it (hits).
- This is effectively a database join (intersection) between the vertices and the mapped molecules.
- Each lookup is efficient using the binary search techniques described previously, but a large fraction of lookups are unproductive (find no hits).
- To improve performance we use a bloom filter as a fast pre-screen, reducing the number of lookups.





**Chemical Edit Distance Search** 

NextMove Software Ltd https://www.nextmovesoftware.com

| SmallWorld Search × WAspirin - Wikipedia, the free                           |                                |                                                                                 |              | John             |
|------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|--------------|------------------|
| ← → C  Smallworld/html/livesearch.html                                       |                                |                                                                                 | ☆ 🛠 🗶        | 🔘 🏓 🔳            |
| SMALLWORLD Chemical Edit Distance Search                                     | _                              |                                                                                 |              |                  |
| Query                                                                        | Results                        |                                                                                 |              | Ŧ                |
|                                                                              | Compound ( 🗹 Cold              | or)                                                                             | Distance     | <b>♦ECFP4</b>    |
| $\neg - = \equiv \sim \triangle \Box \bigcirc \bigcirc \bigcirc \bigcirc FG$ | 1                              | CHEMBL1697753<br>MW: 180.16<br>MF: C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> | o            | 1.00             |
|                                                                              |                                |                                                                                 |              |                  |
|                                                                              |                                | CHEMBL2296002<br>MW: 180.16<br>MF: C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> | 0            | 1.00             |
| о ОН                                                                         | 8                              |                                                                                 |              |                  |
|                                                                              | - Contraction                  | MW: 180.16<br>MF: C <sub>9</sub> H <sub>8</sub> O <sub>4</sub>                  | 0            | 1.00             |
| SMILES CC(=0)0clccccclC(=0)0                                                 | но                             | CHEMBI 499817                                                                   |              |                  |
| DataSet  CHEMBL 20    Search Type  SmallWorld                                |                                | MW: 259.05<br>MF: C <sub>9</sub> H <sub>7</sub> BrO <sub>4</sub>                | 1            | 0.56             |
|                                                                              | $\overline{\nabla}$            |                                                                                 |              |                  |
|                                                                              | Showing 1 to 5 of 6,14         | 6 entries                                                                       |              |                  |
|                                                                              | Identical H                    | ydrogen Hybridisation                                                           | Minor Major  | Deletion         |
| ©2015 NextMove Software Ltd. All Rights Reserved.                            | 30                             |                                                                                 | Searching (2 | 2.4 s Elapsed) 🕄 |
|                                                                              |                                |                                                                                 |              |                  |
|                                                                              |                                |                                                                                 |              |                  |
|                                                                              |                                |                                                                                 |              |                  |
| Small Organic Molecules Workshop, Oxford, UK, Tues                           | day 24 <sup>th</sup> March 202 | 20                                                                              |              |                  |

| SmallWorld Search × W Aspirin - Wikipedia, the free                                      | ×                                                                                                           | ~ & <b>P</b>                       | John                       |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|
| SMALLWORLD Chemical Edit Distance Search                                                 |                                                                                                             |                                    | <b>o</b> =                 |
| Query                                                                                    | Results<br>Compound ( Color)                                                                                | A Distance                         | لع<br>♦ECFP4               |
|                                                                                          | HN NH2<br>HO CHEMBL282239<br>MW: 185.22<br>MF: C <sub>8</sub> H <sub>15</sub> N <sub>3</sub> O <sub>2</sub> | 0                                  | 0.09                       |
|                                                                                          | CHEMBL21120<br>MW: 185.22<br>MF: C <sub>8</sub> H <sub>15</sub> N <sub>3</sub> O <sub>2</sub>               | 0                                  | 0.09                       |
| O' OH                                                                                    | CHEMBL281128<br>MW: 185.22<br>MF: C <sub>8</sub> H <sub>15</sub> N <sub>3</sub> O <sub>2</sub>              | 0                                  | 0.09                       |
| SMILES    CC(=0)0c1ccccc1C(=0)0      DataSet    CHEMBL 20      Search Type    SmallWorld | CHEMBL280511<br>MW: 186.21<br>MF: C <sub>8</sub> H <sub>14</sub> N <sub>2</sub> O <sub>3</sub>              | 0                                  | 0.13                       |
|                                                                                          | Showing 1 to 5 of 31,099 entries                                                                            |                                    |                            |
| ©2015 <u>NextMove Software Ltd</u> . All Rights Reserved.                                | Identical Hydrogen Hybridisation Minor<br>Substitution Change Transmutatio                                  | Major<br>n Transmutation<br>Finish | Deletion<br>ed (Timeout) 🗘 |
| Small Organic Molecules Workshop, Oxford, UK, Tuesd                                      | lay 24 <sup>th</sup> March 2020                                                                             |                                    | Same                       |

iu, or, iuesuay 24 ·P,



## CONCLUSIONS

- The growth in storage capacity of modern hardware allows enumeration of graph space to accelerate graph edit distance search in ways that were impossible just a few years ago.
- The resulting sublinear (constant time) searches avoid the pending apocalypse caused by the growth of virtual on-demand databases.

## ACKNOWLEDGEMENTS

- In memoriam Andy Grant, thank you for everything.
- AstraZeneca R&D, Alderley Park, U.K.
- GlaxoSmithKline, Stevenage, U.K.
- Relay Therapeutics, Boston, U.S.A.
- Eli Lilly, Indianapolis, U.S.A.
- Hoffmann-La Roche, Basel, Switzerland.
- John Irwin, ZINC group, UCSF, San Francisco, U.S.A.
- Catherine Wong, Deane Group, University of Oxford, U.K.
- Jose Batista, OpenEye Scientific Software, Germany.
- Jameed Hussain, Dotmatics Limited, U.K.
- Thank you for your time, Any questions?



### J. ANDREW GRANT (1963-2012)



#### Me and Andy at OpenEye EuroCUP 2008

# COUNTING MOLECULAR SUBGRAPHS

| Name          | Atoms | MW  | Subgraphs |
|---------------|-------|-----|-----------|
| Benzene       | 6     | 78  | 7         |
| Cubane        | 8     | 104 | 64        |
| Ferrocene     | 11    | 186 | 3,154     |
| Aspirin       | 13    | 180 | 127       |
| Dodecahedrane | 20    | 260 | 440,473   |
| Ranitidine    | 21    | 314 | 436       |
| Clopidrogel   | 21    | 322 | 10,071    |
| Morphine      | 21    | 285 | 176,541   |
| Amlodipine    | 28    | 409 | 58,139    |
| Lisinopril    | 29    | 405 | 24,619    |
| Gefitinib     | 31    | 447 | 190,901   |
| Atorvastatin  | 41    | 559 | 3,638,523 |

| ≤ Bond Count | %PubChem |
|--------------|----------|
| ≤ 20 bonds   | 14%      |
| ≤ 25 bonds   | 30%      |
| ≤ 30 bonds   | 55%      |
| ≤ 35 bonds   | 77%      |
| ≤ 40 bonds   | 89%      |
| ≤ 45 bonds   | 93%      |
| ≤ 50 bonds   | 95%      |
| ≤ 55 bonds   | 97%      |
| ≤ 60 bonds   | 98%      |
| ≤ 65 bonds   | 98%      |
| ≤ 70 bonds   | 99%      |